Skip to main content

On the Measurement of Subsonic Flow around an Appended Body of Revolution at Cryogenic Conditions in the NTF

  • Conference paper
High Reynolds Number Flows Using Liquid and Gaseous Helium

Abstract

After a brief review of fluid mechanics scaling, the rationale for testing in the National Transonic Facility (NTF) for ship hydromechanics purposes is discussed. Some pertinent details of the “1986 Body of Revolution Experiment” are presented along with possibilities for a “Future Body of Revolution Experiment” and a “Future Rat Plate Experiment”. Finally NTF testing is considered from the “hydrodynamic” users point of view and a brief comparison is made between the NTF and the Conceptual Helium Tunnel (CHT), which is of major interest to this Conference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

A:

Wake parameter in Fig. 5

AMODEL :

Cross-sectional area of model

ATUNNEL :

Cross-sectional area of Tunnel

c:

Speed of sound in fluid

D:

Diamenter of model

Eu:

Euler number (=p/(pV2))

Fn :

Froude number (=V/(gL)1/2)

g:

Acceleration of Gravity

L:

Model Length

Mn :

Match Number (=V/c)

n:

Power -law exponent in Fig. 4

P:

General flow-field point in Fig. 2

Po :

Total pressure of tunnel

p:

Local static pressure

\( {q_\infty } \) :

Dynamic pressure of tunnel

R:

Maximum radius of body of revolution model

Rn :

Reynolds number based on model length (=VL/v)

Rθ :

Momemtum thickness Reynolds number (=Vθ/v)

r:

Radial distance from model centerline

T:

Total temperature of tunnel

U:

Velocity magnitude

V:

Free-stream velocity magniture = ship speed

Vg :

Ship speed = free-stream velocity magnitude

We:

Weber number (=γ/(ρV2L)

References

  1. F. M. White, Viscous Fluid Flow (McGraw-Hill, N. Y., 1974)

    MATH  Google Scholar 

  2. J. D. Comstock, Principles of Naval Architecture (SNAME, 1967)

    Google Scholar 

  3. M. C. da Vincent, NSRDC Report 3039 (1970)

    Google Scholar 

  4. R. S. Rothblum, NATO Defence Research Seminar on Advanced Hydrodynamic Facilities (NATO, 1982).

    Google Scholar 

  5. L. W. McKinney and D. D. Baals, NASA CP 2183 (1981).

    Google Scholar 

  6. L. R. Kubendran and W. D. Harvey, 3rd Aerodyn. Conf. (AIAA, 1985 ).

    Google Scholar 

  7. Numerical Aerodynamic Simulation Program Plan“, NP–1000–02–000 (NASA Ames Research Center, 1988).

    Google Scholar 

  8. W. B. Morgan and W. C. Lin, Proc. of the 18th ITTC (1987).

    Google Scholar 

  9. “Ames Research Facilities Summary”, (NASA Ames Research Center,1974).

    Google Scholar 

  10. D. W. Coder, NASA CP 2319 (1983).

    Google Scholar 

  11. D. W. Coder, Proc. of the 17th Symp. on Naval Hydro. (ONR, 1988).

    Google Scholar 

  12. D. W. Coder, Proc. of the 14th Symp. on Naval Hydro. (ONR, 1982).

    Google Scholar 

  13. D. W. Coder and M. B. Rubin, Proc. of the Symp. on Hydro. Perf. for Enhancement of Marine Applications (ASME and SNAME, 1988).

    Google Scholar 

  14. W. E. Bruce, Jr. and B.B. Gloss, Special Course in Advances in Cryogenic Wind Tunnel Technology (von Karman Institute for Fluid Dynamics, 1989).

    Google Scholar 

  15. W. S. Saric and J. B. Peterson, 13th Aerodyn. Testing Conf. (AIAA, 1984).

    Google Scholar 

  16. R. W. Mellish and D. W. Coder, DTRC Report SHD-1129–01 (1988).

    Google Scholar 

  17. P. L. Lawing, R. A. Kilgore, and D. D. Dress, Aerospace America (March 1989), p. 34.

    Google Scholar 

  18. R. Donnelly, M. Smith, and C. Swanson, Physics World (February 1990).

    Google Scholar 

  19. R.J. Donnelly, Scientific American (November 1988), p. 100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Coder, D.W., Flechner, S.G., Peterson, J.B. (1991). On the Measurement of Subsonic Flow around an Appended Body of Revolution at Cryogenic Conditions in the NTF. In: Donnelly, R.J. (eds) High Reynolds Number Flows Using Liquid and Gaseous Helium. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3108-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3108-0_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7799-6

  • Online ISBN: 978-1-4612-3108-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics