Skip to main content

Metal Fatigue — A New Perspective

  • Chapter
Topics in Fracture and Fatigue

Abstract

It is well understood that the fatigue limit behavior of a metal is a function of defect size within the Linear Elastic Fracture Mechanics (LEFM) regime. Conversely, it is not well understood how microstructural defects affect the fatigue limits of heterogeneous materials of apparently smooth specimens and engineering components. Consequently in the latter case investigations have concentrated on the cyclic stress-strain, or deformation, approach to fatigue fracture e.g. the Basquin and Coffin-Manson type studies.

By introducing micro-structural fracture mechanics and elastic-plastic fracture mechanics it is possible to link the deformation and the fracture approaches to metal fatigue investigations. This chapter considers these developments and their implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akid, R. (1987). The initiation and growth of short fatigue cracks in an aqueous saline environment. PhD thesis, University of Sheffield. 28.

    Google Scholar 

  • Akid, R. and Miller, K. J. (1990a). The initiation and growth of short fatigue cracks in an aqueous saline environment. In Scott, P. and Cottis, R. A., editors, Environment Assisted Fatigue, EGF publication 7. Mechanical Engineering Publications, London.

    Google Scholar 

  • Akid, R. and Miller, K. J. (1990b). The effect of solution ph on the initiation and growth of short fatigue cracks. In Fracture Behavior and Design of Materials and Structures, pages 1753–1758. EMAS, London.

    Google Scholar 

  • Allen, N. P. and Forrest, P. G. (1956). The influence of temperatures on the fatigue of metals. In Fatigue of Metals, pages 327–340, London. Institution of Mechanical Engineers, IMechE/ASME.

    Google Scholar 

  • Brown, M. W. and Miller, K. J. (1973). A theory for fatigue failure under multiaxial stress-strain conditions. In Proc Instn Mech Engrs, pages 745–755.

    Google Scholar 

  • Brown, M. W. and Miller, K. J., editors (1989). Biaxial and Multiaxial Fatigue, EGF publication 3. Mechanical Engineering Publications.

    Google Scholar 

  • de los Rios, E. R., Mohamed, H.J., and Miller, K. J. (1985). A micro-mechanics analysis for short fatigue crack growth. Fatigue Fract Engng Mater Struct, 8:49–63.

    Article  Google Scholar 

  • Forsyth, P. J. E. (1961). A two-stage process of fatigue crack growth. In Symposium on “Crack Propagation”, pages 76–94, Cranfield.

    Google Scholar 

  • Frost, N. E. and Phillips, C. E. (1956). Studies in the formation and propagation of cracks in fatigue specimens. In Metal Fatigue, pages 520–526, London. Institution of Mechanical Engineers, IMechE/ASME.

    Google Scholar 

  • Hammouda, M. M. and Miller, K. J. (1979). Elastic-plastic fracture mechanics analyses of notches. In ASTM STP 668, pages 703–719. American Society for Testing and Materials.

    Book  Google Scholar 

  • Heyes, P. J. (to be published, 1991). Fatigue cracks at notch roots under high mean stress. PhD thesis, University of Sheffield.

    Google Scholar 

  • Hobson, P. D. (1985). The growth of short fatigue cracks in a medium carbon steel. PhD thesis, University of Sheffield.

    Google Scholar 

  • Jacquet, P. A. (1956). Observations on the microstructure of a brass containing 67 percent of copper, subjected to alternating bending stresses. In Fatigue of Metals, pages 50–6509, London. Institution of Mechanical Engineers, IMechE/ASME.

    Google Scholar 

  • Kitagawa, H. and Takahashi, S. (1976). Applicability of fracture mechanics to very small cracks or the cracks in the early stage. In Proc Second International Conference on Mechanical Behavior of Materials (ICM2), pages 627–631. American Society of Metals.

    Google Scholar 

  • Kussmaul, K. F., McDiarmid, D. L., and Socie, D. F., editors (1991). Fatigue under Biaxial and Multiaxial Loading, ESIS publication 10. Mechanical Engineering Publications.

    Google Scholar 

  • Lukas, P., Kunz, L., Weiss, B., and Stickler, R. (1989). Notch size effect in fatigue. Fatigue Fract Engng Metals Struct, 12:175–186.

    Article  Google Scholar 

  • McClintock, F. A. (1956). The growth of fatigue cracks under plastic torsion. In Proceedings of the International Conference on Fatigue of Material, pages 538–542, London. Institution of Mechanical Engineers, IMechE/ASME.

    Google Scholar 

  • Miller, K. J. (1985). Initiation and growth rates of short fatigue cracks. In Bilby, B. A., Miller, K. J., and Willis, J. R., editors, Fundamentals of Deformation and Fracture. IUTAM Eshelby Memorial Symposium, Cambridge University Press.

    Google Scholar 

  • Miller, K. J. (1991). Metal fatigue — past, current and future. The 27th John Player Lecture, Proc Instn Mech Engs.

    Google Scholar 

  • Miller, K. J. and Brown, M. W., editors (1985). Multiaxial Fatigue, STP 853. American Society for Testing and Materials.

    Google Scholar 

  • Miller, K. J. and de los Rios, E. R., editors (1986). The Behaviour of Short Fatigue Cracks. Mechanical Engineering Publications, London, egf publication 1 edition.

    Google Scholar 

  • Miller, K. J. and de los Rios, E. R., editors (to be published, 1991). Short Cracks. Mechanical Engineering Publications, London, an ESIS (EGF) publication.

    Google Scholar 

  • Navarro, A. and de los Rios, E. R. (1987). A model for short fatigue crack propagation with an interpretation of the short-long crack transition. Fatigue Fract Engng Mater Struct, 10:169–186.

    Article  Google Scholar 

  • Smith, R. A. and Miller, K. J. (1977). Fatigue cracks at notches. Int J Mech Sci, 19:11–22.

    Article  MATH  Google Scholar 

  • Smith, R. A. and Miller, K. J. (1978). Prediction of fatigue regimes in notched components. Int J Mech Sci, 20:201–206.

    Article  Google Scholar 

  • Sun, Z., de los Rios, E. R., and Miller, K. J. (1991). Modelling small fatigue cracks interacting with grain boundaries. Fatigue Fract Engng Mater Struct, 14:277–291.

    Article  Google Scholar 

  • Tanaka, K., Kinefuchi, M., and Yokomaku, T. (to be published, 1991). Modelling of statistical characteristics of propagation of small fatigue cracks. In Short Cracks, ESIS (EGF) publication 12. Mechanical Engineering Publications, London.

    Google Scholar 

  • Tomkins, B. (1968). Fatigue crack propagation — an analysis. Phil Mag, 18:1041–1066.

    Article  Google Scholar 

  • Yates, J. R. and Brown, M. W. (1987). Prediction of the length of non-propagating fatigue cracks. Fatigue Fract Engng Mater Struct, 10:187–201.

    Article  Google Scholar 

  • Zhang, W. (1991). Short fatigue crack behavior under different loading systems. PhD thesis, University of Sheffield.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Miller, K.J. (1992). Metal Fatigue — A New Perspective. In: Argon, A.S. (eds) Topics in Fracture and Fatigue. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2934-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2934-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7726-2

  • Online ISBN: 978-1-4612-2934-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics