Skip to main content

Growth of Cracks By Intergranular Cavitation in Creep

  • Chapter
Topics in Fracture and Fatigue

Abstract

The spread of intergranular creep damage around blunt notches and sharp cracks in ductile single phase alloys is modeled by a mechanism based continuum material damage model and a finite element approach. The details of the material damage have been derived from extensive earlier experimental results on an austenitic stainless steel. The finite element simulation of the evolution of intergranular damage in the form of accumulating densities of grain boundary facet cracks has indicated that while this damage spreads out preferentially along inclined planes around the tips of sharp cracks, it localized in the symmetry plane ahead of a blunt notch. These results are in excellent agreement with the experimental observations of Ozmat, et al. on the directions of early crack growth from sharp cracks and blunt notches in Type 304 stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Argon, A. S. (1982). In Wilshire, B. and Owen, D. R. J., editors, Recent Advances in Creep and Fracture of Engineering Materials and Structures, Pineridge Press, Swansea, page 1.

    Google Scholar 

  • Argon, A. S. (1983). Scripta Metall., 17:5.

    Article  Google Scholar 

  • Argon, A. S., and Im, J. (1975). Met. Trans., 6A:839.

    Google Scholar 

  • Argon, A. S., Lau, C. W., Ozmat, B., and Parks, D. M. (1985). In Miller, K. J. et al., editors, Fundamentals of Deformation and Fracture, Cambridge Univ. Press, Cambridge, page 189.

    Google Scholar 

  • Ashby, M. F. and Dyson, B. F. (1984). In Valluri, S. R. et al., editors, Advances in Fracture Research ’84 - Proceedings of ICF6, Pergamon Press, Oxford, 1:3.

    Google Scholar 

  • Ashby, M. F., Gandhi, C., and Taplin, D. M. R. (1979). Acta Metall., 27:699.

    Article  Google Scholar 

  • Barsoum, R. S. (1977). Int. J. Numer. Met. Eng., 11:85.

    Article  MATH  Google Scholar 

  • Bassani, J. L. and McClintock, F. A. (1981). Int. J. Sol. Struct., 17:479.

    Article  MATH  Google Scholar 

  • Bridgman, P. W. (1952). Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Cane, B. J. (1978). Metal Sci., 12:102.

    Google Scholar 

  • Capano, M., Argon, A. S., and Chen, I.-W. (1989). Acta. Metall., 37:3195.

    Article  Google Scholar 

  • Chen, I.-W. and Argon, A. S. (1979). Acta Metall., 27:749.

    Article  Google Scholar 

  • Chen, I.-W. and Argon, A. S. (1981a). Acta Metall., 29:1321.

    Article  Google Scholar 

  • Chen, I.-W. and Argon, A. S. (1981b) Acta. Metall., 29:1759.

    Article  Google Scholar 

  • Chuang, T.-J., Kagawa, K. I., Rice, J. R., and Sills, L. B. (1979). Acta Metall., 27:265.

    Article  Google Scholar 

  • Crossman, F. W. and Ashby, M. F. (1975). Acta. Metall., 23:425.

    Article  Google Scholar 

  • Davis, E. A. and Manjoine, M. J. (1953). In Strength and Ductility of Metals at Elevated Temperatures, STP-128, ASTM, Philadelphia, page 67.

    Google Scholar 

  • Don, J. and Majumdar, S. (1986). Acta Metall., 34:961.

    Article  Google Scholar 

  • Dyson, B.F. (1976). Metal Sci., 10:349.

    Article  Google Scholar 

  • Dyson, B. F. (1987). private communication of data by Kandil and Dyson.

    Google Scholar 

  • Dyson, B. F. and McLean, D. (1977). Metal Sci., 11:37.

    Article  Google Scholar 

  • Ghahremani, F. (1980). Int. J. Solids Struct., 16:847.

    Article  MATH  Google Scholar 

  • Griffith, A. A. (1920). Phil. Trans. Roy. Soc., (London), A221:163.

    Google Scholar 

  • Griffith, A. A. (1924). Proc. First Intern. Conf. Appl. Mech., (Delft), page 55.

    Google Scholar 

  • Hart, E. W. (1967). Acta Metall., 15:1545.

    Article  Google Scholar 

  • Hayhurst, D. R., Brown, P. R., Morrison, C. J. (1984). Phil Trans. R. Soc. (London), A311:131.

    Google Scholar 

  • Hayhurst, D. R., Dimmer, P. R., and Morrison, C. J. (1984). Phil. Trans. R. Soc. (London), A311:103.

    Google Scholar 

  • Hayhurst, D. R., Leckie, F. A., and Morrison, C. J. (1978). Proc. R. Soc., A360:243.

    Google Scholar 

  • He, M. Y. and Hutchinson, J. W. (1981). J. Appl. Mech., 48:830.

    Article  MATH  Google Scholar 

  • Hsia, K. J. (1989). Modeling of intergranular creep damage and investigation of the role of creep crack growth in creep life prediction, Ph.D. Thesis in Mechanical Engineering, M.I.T., Cambridge, MA, U.S.A.

    Google Scholar 

  • Hsia, K. J., Argon, A. S. and Parks, D. M. (1991a). Mech. Mater., 11:19.

    Article  Google Scholar 

  • Hsia, K. J., Parks, D. M. and Argon, A. S. (1991b). Mech. Mater., 11:43.

    Article  Google Scholar 

  • Hull, D., and Rimmer, D. E. (1959). Phil. Mag., 4:673.

    Article  Google Scholar 

  • Hult, J. A. H., and McClintock, F. A. (1957). IXe Congrés International de Mécanique Appliquée, Actes, 8:51.

    Google Scholar 

  • Hutchinson, J. W. (1983). Acta Metall., 31:1079.

    Article  Google Scholar 

  • Irwin, G. R. (1948). In Fracturing of Metals, ASM: Metals Park, Ohio, page 147.

    Google Scholar 

  • Kachanov, L. M. (1958). Izv. Akad. Nauk SSSR Otk. Teck. Nauk. 8:26.

    Google Scholar 

  • Kumar, V., German, M. D. and Shih, C. F. (1981). An engineering approach for elastic—plastic fracture analysis, EPRI Topical Report NP- 1931, Palo Alto, California.

    Google Scholar 

  • Leckie, F. A. and Hayhurst, D. R. (1974), Proc. R. Soc., A340:323.

    Google Scholar 

  • Leckie, F. A. and Hayhurst, D. R. (1977). Acta Metall., 25:1059.

    Article  Google Scholar 

  • Martinez, L. and Nix, W. D. (1982). Met. Trans., 13A:427.

    Google Scholar 

  • McClintock, F. A. (1968). J. Appl. Mech., 35:363.

    Google Scholar 

  • McClintock, F. A. (1969). In Argon, A. S., editor, Physics of Strength and Plasticity, MIT Press, Cambridge, MA page 307.

    Google Scholar 

  • McClintock, F. A. (1971). In Leibowitz, H., editor, Fracture: an Advanced Treatise, Academic Press, New York, 3:47.

    Google Scholar 

  • McClintock, F. A. and Argon, A. S. (1966). Mechanical Behavior of Materials Addison Wesley, Reading, MA.

    Google Scholar 

  • McClintock, F. A., Kaplan, S. M. and Berg, C. A. (1966). International J. Fract. Mech., 2:614.

    Google Scholar 

  • Nagpal, V., McClintock, F. A., Berg, C. A. and Subudhi, M. (1973). In Sawczuk, A., editor, Foundations of plasticity, Noordhoff, Leyden, page 365.

    Google Scholar 

  • Needleman, A. and Rice, J. R. (1980). Acta. Metall., 28:1315.

    Article  Google Scholar 

  • Orowan, E. (1934). Z. Kristallographie, 89:327.

    Google Scholar 

  • Orowan, E. (1949). rep. Prog. Phys., 12:185.

    Article  Google Scholar 

  • Ozmat, B., Argon, A. S. and Parks, D. M. (1991). Mech. Mater., 11:1.

    Article  Google Scholar 

  • Parks, D. M. (1987). Nucl. Eng. Design, 105:11.

    Article  Google Scholar 

  • Pharr, G. M. and Nix, W. D. (1979). Acta Metall., 27:1615.

    Article  Google Scholar 

  • Rice, J. R. (1981). Acta Metall., 29:675.

    Article  Google Scholar 

  • Rice, J. R. and Johnson, M. A. (1970). In Kanninen, M. F. et al., editors, Inelastic Behavior of Solids, McGraw-Hill, New York, page 641.

    Google Scholar 

  • Riedel, H. (1987). Fracture at High Temperatures, Springer, Berlin.

    Google Scholar 

  • Sham, T.-L. and Needleman, A. (1983). Acta Metall., 31:919.

    Article  Google Scholar 

  • Speight, M. V. and Beere, W. (1975). Metal. Sci., 9:190.

    Article  Google Scholar 

  • Swindeman, R. (1982). private communication quoted by Argon et al. (1985).

    Google Scholar 

  • Tipper, C. F. (1949). Metallurgia, 39:133.

    Google Scholar 

  • Tvergaard, V. (1984). Acta Metall., 32:1977.

    Article  Google Scholar 

  • Tvergaard, V. (1985a). Mech. Mater., 4:181.

    Article  Google Scholar 

  • Tvergaard, V. (1985b). Int. J. Sol. Struct., 21:279.

    Article  Google Scholar 

  • Tvergaard, V. (1986). Int. J. Fracture, 31:183.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Argon, A.S., Hsia, K.J., Parks, D.M. (1992). Growth of Cracks By Intergranular Cavitation in Creep. In: Argon, A.S. (eds) Topics in Fracture and Fatigue. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2934-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2934-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7726-2

  • Online ISBN: 978-1-4612-2934-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics