Skip to main content

The Dynamic Selection Hypothesis: A Proposed Function for Cerebellar Sagittal Zones

  • Chapter
The Cerebellum Revisited

Abstract

This chapter reviews our recent studies of the climbing fiber’s heterosynaptic action on individual Purkinje cells and presents a new hypothesis, the “dynamic selection” hypothesis, regarding the functional basis for the sagittal zones of the cerebellum. This hypothesis is developed through a discussion of our findings as well as those from other laboratories in the context of two theories of climbing fiber function: one proposing that these afferents perform a major role in establishing en-grams in the cerebellar cortex required for motor learning and the other arguing that climbing fibers are most critical for real-time operations performed by the cerebellum during motor execution. Our experiments support the latter view by demonstrating a specific short-term action of climbing fibers on simple spike responses in passive paradigms as well as in multiple, sagittally organized Purkinje cells during perturbed locomotion. Other studies examining the effect of cerebellar ablation on the classically conditioned nictitating membrane/eyeblink response in rabbits substantiate our previously held contention that the cerebellum is neither sufficient nor necessary for this type of conditioned behavior currently being used as models for motor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersson, G. and Armstrong, D.M. (1987): Complex spikes in Purkinje cells in the Lateral vermis (b Zone) of the cat cerebellum during locomotion. J. Physiol, 385, 107–134.

    PubMed  CAS  Google Scholar 

  • Armstrong, D.M, and Edgley, S.A. (1984): Discharges of Purkinje cells in the paravermal part of the cerebellar anterior lobe during locomotion in the cat. J. Physiol, 352, 403–424.

    PubMed  CAS  Google Scholar 

  • Baker, R, Weiser, M, and McElligott, J.G (1988): Adaptive gain control of the vestibulo-ocular reflex in goldfish. I. Hemicerebellectomy. Soc. Neurosci. Abstr., 14, 169.

    Google Scholar 

  • Bishop, G.A, McCrea, R. A., Lighthall, J.W, and Kitai, S.T. (1979): An HRP and autoradiographic study of the projection from the cerebellar cortex to the nucleus interpositus anterior and nucleus interpositus posterior of the cat. J. Comp. Neurol, 185,735–756.

    Article  PubMed  CAS  Google Scholar 

  • Bloedel, J.R, and Burton, J.E. (1970): Electrophysiological evidence for a mossy fiber input to the cerebellar cortex activated indirectly by collaterals of spinocerebellar pathways. J. Neurophysiol, 33, 308–320.

    PubMed  CAS  Google Scholar 

  • Bloedel, J.R, and Courville, J. (1981): A review of cerebellar afferent systems. In: Handbook of Physiology, Vol. II. Motor Control. (V.B. Brooks, ed.). Baltimore: Williams and Wilkins, pp. 735–830.

    Google Scholar 

  • Bloedel, J.R, and Ebner, T.J. (1985): Climbing fiber function: Regulation of Purkinje cell responsiveness. In: Cerebellar Functions. (J.R. Bloedel, J. Dichgans, and W. Precht, eds). Berlin, Heidelberg, New York: Springer-Verlag, pp. 247–259.

    Chapter  Google Scholar 

  • Bloedel, J.R, Ebner, T.J, and Yu, Q.-X. (1983): Increased responsiveness of Purkinje cells associated with climbing fiber inputs to neighboring neurons. J. Neurophysiol, 50, 220–239.

    PubMed  CAS  Google Scholar 

  • Bloedel, J.R, and Lou, J.S. (1987): The relation between Purkinje cell simple spike responses and the action of the climbing fiber system in unconditioned and conditioned responses of forelimb to perturbed locomotion. In: Cerebellum and Neuronal Plasticity. (M. Glickstein, J. Stein, and C. Yeo, eds). New York: Plenum, pp. 261–276.

    Chapter  Google Scholar 

  • Bloedel, J.R., and Zuo, C.-C. (1989): The heterosynaptic action of climbing fibers in the cerebellar cortex. Exp. Brain Res. Series 17, 246–264.

    Google Scholar 

  • Bloedel, J.R., Zuo, C.-C, Ferguson, R., and Lou, J.-S. (1987): Modifications in the character of a conditioned response produced by extensive cerebellar lesions in the decerebrate ambulating ferret. Soc. Neurosci. Abstr., 13, 232.

    Google Scholar 

  • Bower, J., and Llinas, R. (1983): Simultaneous sampling of the responses of closely adjacent Purkinje cells responding to climbing fiber activation. Soc. Neurosci. Abstr., 9, 607.

    Google Scholar 

  • Bower, J.M., and Woolston, D.C. (1983): Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: Vertical organization of cerebellar cortex. J. Neurophysiol, 49, 745–766.

    PubMed  CAS  Google Scholar 

  • Brodal, A., and Kawamura, K. (1980): Olivocerebellar projection: A review. Advances in Anat. Embryol. and Cell Biol, 64, 1–140.

    Article  Google Scholar 

  • Courville, J. (1975): Distribution of olivo-cerebellar fibers demonstrated by a radio-autographic tracing method. Brain Res., 95, 253–263.

    Article  PubMed  CAS  Google Scholar 

  • Courville, J., and Diakiw, N. (1976): Cerebellar corticonuclear projection in the cat. The vermis of the anterior and posterior lobes. Brain Res., 110, 1–20.

    CAS  Google Scholar 

  • Courville, J., Diakiw, N., and Brodal, A. (1973): Cerebellar corticonuclear projection in the cat. The paramedian lobule: An experimental study with silver methods. Brain Res., 50, 25–45.

    CAS  Google Scholar 

  • Courville, J., and Faraco-Cantin, F. (1980): Topography of the olivocerebellar projection: An experimental study in the cat with an autoradiographic tracing method. In: The Inferior Olivary Nucleus: Anatomy and Physiology. (J. Courville, C. DeMontigny, and Y. Lamarre, eds). New York: Raven Press, pp. 235–277.

    Google Scholar 

  • Dietrichs, E. (1981): The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of horseradish peroxidase. III. The anterior lobe. Anat. Embryol, 162, 223–247.

    CAS  Google Scholar 

  • Dietrichs, E., and Walberg, F. (1980): The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of horseradish peroxidase. II. Lobulus simplex, Crus I and Crus II. Anat. Embryol, 161, 83–103.

    Article  PubMed  CAS  Google Scholar 

  • Ebner, T.J., and Bloedel, J.R. (1981): Role of climbing fiber afferent input in determining the responsiveness of Purkinje cells to mossy fiber inputs. J. Neurophysiol, 45, 962–971.

    PubMed  CAS  Google Scholar 

  • Ebner, T.J., and Bloedel, J.R. (1984): Climbing fiber action on the responsiveness of Purkinje cells to parallel fiber inputs. Brain Res., 309, 182–186.

    Article  PubMed  CAS  Google Scholar 

  • Ebner, T.J., Yu, Q.-X, and Bloedel, J.R. (1983): Increase in Purkinje cell gain associated with naturally activated climbing fiber inputs. J. Neurophysiol, 50, 205–219.

    PubMed  CAS  Google Scholar 

  • Eccles, J.C, Llinás, R., and Sasaki, K. (1966): The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol, 182, 268–296.

    PubMed  CAS  Google Scholar 

  • Ekerot, C.-F., and Kano, M. (1985): Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res., 342, 357–360.

    Article  PubMed  CAS  Google Scholar 

  • Fanardjian, B.V., and Sarkissian, V.A. (1980): Spatial organization of the cerebellar corticovestibular projection in the cat. Neuroscience, 5, 551–558.

    Article  PubMed  CAS  Google Scholar 

  • Gellman, R., Gibson, A.R., and Houk, J.C. (1985): Inferior olivary neurons in the awake cat: Detection of contact and passive body movement. J. Neurophysiol, 54, 40–60.

    PubMed  CAS  Google Scholar 

  • Gellman, R., Houk, J.C, and Gibson, AR. (1983): Somatosensory properties of the inferior olive of the cat. J. Comp. Neurol, 215, 228–243.

    Article  PubMed  CAS  Google Scholar 

  • Gilman, S., Bloedel, J.R., and Lechtenberg, R. (1981): Disorders of the Cerebellum. Philadelphia: Davis Co.

    Google Scholar 

  • Gormezano, I., Kehoe, E.J., and Marshall, B.S. (1983): Twenty years of classical conditioning research with the rabbit. In: Progress in Psychobiology and Physiological Psychology, Vol. 10. (J. Sprague, and A.N. Epstein, eds). New York: Academic Press, pp. 197–275.

    Google Scholar 

  • Groenewegen, H.J., and Voogd, J. (1977): The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of the cat cerebellum. J. Comp. Neurol, 174, 417–488.

    CAS  Google Scholar 

  • Groenewegen, H.J., Voogd, J., and Freedman, S.L. (1979): The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J. Comp. Neurol, 183, 551–601.

    CAS  Google Scholar 

  • Haines, D.E., Patrick, G.W., and Satrulee, P. (1982): Organization of cerebellar corticonuclear fiber systems. In: The Cerebellum-New Vistas. (S.L. Palay, and V. Chan-Palay, eds). Berlin, Heidelberg: Springer-Verlag, pp. 320–371.

    Chapter  Google Scholar 

  • Houk, J.C, and Gibson, A.R. (1986): Sensorimotor processing through the cerebellum. In: New Concepts in Cerebellar Neurobiology. (J.S. King, and J. Courville, eds). New York: Alan R. Liss, pp. 387–416.

    Google Scholar 

  • Ito, M., and Kano, M. (1982): Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci. Lett., 33, 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., Sakurai, M., and Tongroach, P. (1982): Climbing fibre-induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J. Physiol, 324, 113–134.

    PubMed  CAS  Google Scholar 

  • Ito, M, Yoshida, M, and Obata, K. (1964): Monosynaptic inhibition of the intracerebellar nuclei induced from the cerebellar cortex. Experientia, 20, 575–576.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M, Yoshida, M, Obata, K, Kawai, N, and Udo, M. (1970): Inhibitory control of intracerebellar nuclei by the Purkinje cell axons. Exp. Brain. Res., 10, 64–80.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, J, and Brodal, A. (1940): Experimental studies on the intrinsic fibers of the cerebellum. II. The corticonuclear projections. J. Comp. Neurol, 73, 267–321.

    Google Scholar 

  • Kano, M, and Kato, M. (1987): Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature, 325, 276–278.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, T.M, Zuo, C.-C, and Bloedel, J.R. (1990): Classical conditioning of the eyeblink reflex in the decerebrate-decerebellate rabbit. Behav. Brain Res., 38, 7–18.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.H., Wang, J.-J, and Ebner, T.J. (1987): Climbing fiber afferent modulation during treadmill locomotion in the cat. J. Neurophysiol, 57, 787–802.

    PubMed  CAS  Google Scholar 

  • Llinás, R. (1982): Radial connectivity in the cerebellar cortex: A novel view regarding the functional organization of the molecular layer. In: The Cerebellum-New Vistas. (S.L. Palay, and V. Chan-Palay, eds.) Berlin, Heidelberg: Springer-Verlag, pp. 189–194.

    Chapter  Google Scholar 

  • Llinás, R. (1985): Functional significance of the basic cerebellar circuit in motor coordination. In: Cerebellar Functions. (J.R. Bloedel, J. Dichgans, and W. Precht, eds.) Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, pp. 170–185.

    Google Scholar 

  • Llinás, R, Baker, R, and Sotelo, C. (1974): Electrotonic coupling between neurons in cat inferior olive. J. Neurophysiol, 37, 560–571.

    PubMed  Google Scholar 

  • Llinás, R, and Nicholson, C. (1976): Reversal properties of climbing fiber potential in cat Purkinje cells: An example of a distributed synapse. J. Neurophysiol, 39,311–323.

    PubMed  Google Scholar 

  • Llinás, R, and Sasaki, K. (1989): The functional organization of the olivocerebellar system as examined by multiple Purkinje cell recordings. Eur. J. Neurosci., 1, 587–602.

    Article  PubMed  Google Scholar 

  • Llinás, R, and Sugimori, M. (1980a): Electrophysio¬logical properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol, 305, 197–213.

    PubMed  Google Scholar 

  • Llinás, R, and Sugimori, M. (1980b): Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol, 305, 171–195.

    PubMed  Google Scholar 

  • Llinás, R, and Yarom, Y. (1981): Electrophysiology of mammalian inferior olivary neurons in vitro. Different types of voltage-dependent ionic conductances. J. Physiol, 315, 549–567.

    Google Scholar 

  • Lou, J.-S, and Bloedel, J.R. (1986): The responses of simultaneously recorded Purkinje cells to perturbations of the step cycle in the walking ferret: A study using a new analytical method—the real time postsynaptic response (RTPR). Brain Res., 365, 340–344.

    Article  PubMed  CAS  Google Scholar 

  • Lou, J.-S, and Bloedel, J.R. (1988a): A new conditioning paradigm: Conditioned limb movements in locomoting deerebrate ferrets. Neurosci. Lett., 84, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Lou, J.-S, and Bloedel, J.R. (1988b): A study of cerebellar cortical involvement in motor learning using a new avoidance conditioning paradigm involving limb movement. Brain Res., 445, 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Mano, N.I, Kanazawa, I, and Yamamoto, K.I. (1986): Complex-spike activity of cerebellar Purkinje cells related to wrist tracking movement in monkey. J. Neurophysiol, 56, 137–158.

    PubMed  CAS  Google Scholar 

  • McCormick, D.A, Stienmetz, J.E, and Thompson, R.F. (1985): Lesions of the inferior olivary complex cause extinction of the classically conditioned eye-blink response. Brain Res., 359, 120–130.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, D.A, and Thompson, R.F. (1984a): Cere-bellum: Essential involvement in the classically conditioned eyelid response. Science, 223, 296–299.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, D.A, and Thompson, R.F. (1984b): Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. J. Neurosci, 4, 2811–2822.

    PubMed  CAS  Google Scholar 

  • Oscarsson, O. (1979): Functional units of the cerebellum-sagittal zones and microzones. Trends Neurosci., 2, 143–145.

    Article  Google Scholar 

  • Palkovits, M, Mesey, E, Harmori, J, and Szentagothai, J. (1977): Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses. Exp. Brain Res., 28, 189–209.

    CAS  Google Scholar 

  • Pellionisz, A.J. (1985): Tensorial brain theory in cerebellar modelling. In: Cerebellar Functions: (J.R. Bloedel, J. Dichgans, and W. Precht, eds.) Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, pp. 201–299.

    Google Scholar 

  • Pellionisz, A, and Llinás, R. (1977): A computer model of cerebellar Purkinje cells. Neuroscience, 2, 37–48.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, L.T, and Laxer, H.D. (1981): Localization of cutaneously elicited climbing fiber responses in lobule V of the monkey cerebellum. Brain Behav. Evol, 18, 157–168.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, L.T, Laxer, H.D, and Rushmer, D.S. (1982): Organization of climbing fiber input from mechano-receptors to lobule V vermal cortex in the cat. Exp. Brain Res., 46, 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Rosina, A., and Provini, L. (1983): Somatotopy of climbing fiber branching to the cerebellar cortex in the cat. Brain Res., 289, 45–63.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, K., Bower, J.M., and Llinas, R. (1989): Multiple Purkinje cell recording in rodent cerebellar cortex. Euro. J. Neurosci., 1, 572–586.

    Article  Google Scholar 

  • Shambes, G.M., Gibson, J.M., and Welker, W. (1978): Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micro-mapping. Brain Behav. Evol, 15, 94–140.

    Article  PubMed  CAS  Google Scholar 

  • Tank, D.W., Sugimori, M., Connor, J.A., and Llinás, R.R. (1988): Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science, 242, 773–777.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, R.F. (1986): The neurobiology of learning and memory. Science, 223, 941–947.

    Article  Google Scholar 

  • Tolbert, D.L., Bantli, H, and Bloedel, J.R. (1976): Anatomical and physiological evidence for a cerebellar nucleocortical projection in the cat. Neuroscience, 1, 205–217.

    Article  PubMed  CAS  Google Scholar 

  • Tolbert, D.L., Bantli, H., and Bloedel, J.R. (1978): Organizational features of the cat and monkey cerebellar nucleocortical projection. J. Comp. Neurol, 182, 39–56.

    Article  PubMed  CAS  Google Scholar 

  • Voogd, J. (1969): The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Neurobiology of Cerebellar Evolution and Development. (R. Llinás, ed.) Chicago: American Medical Association, pp. 493–541.

    Google Scholar 

  • Voogd, J., and Bigare, F. (1980): Topographical distribution of olivary and corticonuclear fibers in the cerebellum: A review. In: The Inferior Olivary Nucleus: Anatomy and Physiology. (J. Courville, C. de Montigny, and Y. Lamarre, eds.) New York: Raven Press, pp. 207–234.

    Google Scholar 

  • Weiser, M., McElligott, J.R., and Baker, R. (1988): Adaptive gain control of the vestibulo-ocular reflex in goldfish. II. Total cerebellectomy. Soc. Neurosci. Abstr., 14, 169.

    Google Scholar 

  • Welsh, J.P., and Harvey, J.A. (1989): Cerebellar lesions and the nictitating membrane reflex: Performance deficits of the conditioned and unconditioned response. J. Neurosci., 9, 299–311.

    PubMed  CAS  Google Scholar 

  • Yeo, C.H., Hardiman, M.J., and Glickstein, M. (1984): Discrete lesions of the cerebellar cortex abolish the classically conditioned nictitating membrane response of the rabbit. Behav. Brain Res., 13,261–266.

    Article  PubMed  CAS  Google Scholar 

  • Yeo, C.H., Hardiman, M.J., and Glickstein, M. (1985a): Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp. Brain Res., 60, 87–98.

    CAS  Google Scholar 

  • Yeo, C.H., Hardiman, M.J., and Glickstein, M. (1985b): Classical conditioning of the nictitating membrane response of the rabbit. II. Lesions of the cerebellar cortex. Exp. Brain Res., 60, 99–113.

    CAS  Google Scholar 

  • Yu, Q-X, Ebner, T.J., and Bloedel, J.R. (1985): Electro-physiological study of the corticonuclear projection in the cat cerebellum. Brain Res., 237, 121–134.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Bloedel, J.R., Kelly, T.M. (1992). The Dynamic Selection Hypothesis: A Proposed Function for Cerebellar Sagittal Zones. In: Llinás, R., Sotelo, C. (eds) The Cerebellum Revisited. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2840-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2840-0_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7691-3

  • Online ISBN: 978-1-4612-2840-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics