Skip to main content

Painlevé Analysis for Nonlinear Partial Differential Equations

  • Chapter
The Painlevé Property

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

The Painlevé analysis introduced by Weiss, Tabor, and, Carnevale (WTC) in 1983 for nonlinear partial differential equations (PDEs) is an extension of the method initiated by Painlevé and Gambier at the beginning of this century for the classification of algebraic nonlinear differential equations (ODEs) without movable critical points. In this chapter we explain the WTC method in its invariant version introduced by Conte in 1989 and its application to solitonic equations in order to find algorithmically their associated Bäcklund transformations. Many remarkable properties are shared by these so-called integrable equations, but they are generically no longer valid for equations modeling physical phenomena. Belonging to this second class, some equations called “partially integrable” sometimes keep remnants of integrability. In that case, the singularity analysis may also be useful for building closed-form analytic solutions, which necessarily agree with the singularity structure of the equations. We display the privileged role played by the Riccati equation and systems of Riccati equations that are linearizable, as well as the importance of the Weierstrass elliptic function, for building solitary waves or more elaborate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.J. Ablowitz and P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering (Cambridge University Press, Cambridge, 1991).

    MATH  Google Scholar 

  2. M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974), 249–315.

    MathSciNet  Google Scholar 

  3. M.J. Ablowitz, A. Ramani, and H. Segur, Nonlinear evolution equations and ordinary differential equations of Painlevé type, Lett. Nuov. Cimento 23 (1978), 333–338.

    MathSciNet  Google Scholar 

  4. M.J. Ablowitz, A. Ramani, and H. Segur, A connection between nonlinear evolution equations and ordinary differential equations of P-type. I, J. Math. Phys. 21 (1980), 715–721; II, 21 (1980), 1006–1015.

    MathSciNet  ADS  MATH  Google Scholar 

  5. M.J. Ablowitz and H. Segur, Exact linearization of a Painlevé transcendent, Phys. Rev. Lett. 38 (1977), 1103–1106.

    MathSciNet  ADS  Google Scholar 

  6. M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981).

    Google Scholar 

  7. R. Anderson, J. Harnad, and P. Winternitz, Systems of ordinary differential equations with nonlinear superposition principles, Physica D 4 (1982), 164–182.

    MathSciNet  ADS  Google Scholar 

  8. A.V. Bäcklund, Om ytor med konstant negativ krng, Lunds Universitets Arsskrift Avd. 2 19 (1883), with an abstract in French.

    Google Scholar 

  9. N. Bekki and K. Nozaki, Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation, Phys. Lett. A 110 (1985), 133–135.

    ADS  Google Scholar 

  10. T.B. Benjamin, J.L. Bona, and J.J. Mahoney, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. Roy. Soc. A 272 (1972), 47–78.

    ADS  Google Scholar 

  11. M. Boiti and F. Pempinelli, Nonlinear Schrödinger equation, Bäcklund transformations and Painlevé transcendents, II Nuovo Cimento B 59 (1980), 40–58.

    MathSciNet  ADS  Google Scholar 

  12. M. Boiti and Tu G.-Z., Bäcklund transformations via gauge transformations, II Nuovo Cimento B 71 (1982), 253–264.

    MathSciNet  ADS  Google Scholar 

  13. M. Boiti, C. Laddomada, F. Pempinclli, and Tu G.Z., Bäcklund transformations related to the Kaup-Newell spectral problem, Physica D 9, 425–432.

    Google Scholar 

  14. J. Boussinesq, Théorie des ondes qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dansce canal des vitesses sensiblement pareilles de la surface du fond, J. de math, pures et appliquées 17 (1872), 55–108.

    Google Scholar 

  15. T. Brugarino, Painlevé property, auto-Bäcklund transformation, Laxpairs, and reduction to the standard form for the Korteweg-de Vries equation with nonuniformities, J. Math. Phys. 30 (1989), 1013–1015.

    MathSciNet  ADS  MATH  Google Scholar 

  16. T. Brugarino and P. Pantano, The integration of Burgers and Korteweg-de Vries equations with nonuniformities, Phys. Lett. A 80 (1980), 223–224.

    MathSciNet  ADS  Google Scholar 

  17. F.J. Bureau, Differential equations with fixed critical points, Annali di Matematica pura ed applicata LXVI (1964), 1–116 [abbreviated as M.II].

    MathSciNet  Google Scholar 

  18. F.J. Bureau, Équations différentielles du second ordre en Y et du second degré en Ÿ dont l’intégrale générale est à points critiques fixes, Annali di Matematica pura ed applicata XCI (1972), 163–281 [abbreviated as M.III].

    MathSciNet  Google Scholar 

  19. F. Calogero and S. de Lillo, The Eckhaus PDE t +ψ xx +2(∣ψ2) x ψ + ∣ψ4 ψ = 0, Inverse problems 3 (1987), 633–681; 4 (1988), 571.

    MathSciNet  ADS  Google Scholar 

  20. P.J. Caudrcy, R.K. Dodd, and J.D. Gibbon, A new hierarchy of Korteweg-de Vries equations, Proc. Roy. Soc. London A 351 (1976), 407–422.

    ADS  Google Scholar 

  21. J. Chazy, Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Thèse, Paris (1910); Acta Math. 34 (1911), 317–385. Table des matiè res commentée avec index, R. Conte (1991), 6 pages.

    MathSciNet  MATH  Google Scholar 

  22. H.H. Chen, General derivation of Bäcklund transformations from inverse scattering problems, Phys. Rev. Lett. 33 (1974), 925–928.

    MathSciNet  ADS  Google Scholar 

  23. M. J. Clairin, Sur quelques équations aux dérivées partielles du second ordre, Ann. Toulouse 5 (1903), 437–458.

    MathSciNet  Google Scholar 

  24. P.A. Clarkson, J.B. McLeod, P.J. Olver, and A. Ramani, Integrability of Klein-Gordon equations, Siam J. Math. Anal. 17 (1986), 798–802.

    MathSciNet  MATH  Google Scholar 

  25. P.A. Clarkson and C.M. Cosgrove, The Painlevé property and a generalised derivative nonlinear Schrödinger equation, J. Phys. A 20 (1987), 2003–2024.

    MathSciNet  ADS  MATH  Google Scholar 

  26. P.A. Clarkson, A.S. Fokas, and M.J. Ablowitz, Hodograph transformations on linearizable partial differential equations, SIAM J. Appl. Math. 49 (1989), 1188–1209.

    MathSciNet  MATH  Google Scholar 

  27. P. Clarkson, Painlevé analysis of the damped, driven nonlinear Schrödinger equation, Proc. Roy. Soc. Edin. 109A (1988), 109–126.

    MathSciNet  Google Scholar 

  28. R. Conte, Invariant Painlevé analysis of partial differential equations, Phys. Lett. A 140 (1989), 383–390.

    MathSciNet  ADS  Google Scholar 

  29. R. Conte, Painlevé singular manifold equation and integrability, Inverse methods in action, ed. P.C. Sabatier, Springer series “Inverse problems and theoretical imaging” (Springer, erlin, 1990), pages 497–504.

    Google Scholar 

  30. R. Conte and M. Musette, Painlevé analysis and Bäcklund transformation in the Kuramoto-Sivashinsky equation, J. Phys. A 22 (1989), 169–177.

    MathSciNet  ADS  MATH  Google Scholar 

  31. R. Conte and M. Musette, Link between solitary waves and protective Riccati equations, J. Phys. A 25 (1992), 5609–5623.

    MathSciNet  ADS  MATH  Google Scholar 

  32. R. Conte and M. Musette, Linearity inside nonlinearity: exact solutions to the complex Ginzburg-Landau equation, Physica D 69 (1993), 1–17.

    MathSciNet  ADS  MATH  Google Scholar 

  33. R. Conte and M. Musette, Exact solutions to the partially integrable Eckhaus equation, Teor. i Mat. Fiz. 99 (1994), 226–233; Theor. and Math. Phys. 99 (1994), 543-548.

    MathSciNet  Google Scholar 

  34. R. Conte and M. Musette, Beyond the two-singular manifold method, Nonlinear physics: theory and experiment, eds. E. Alfinito, M. Boiti, L. Martina and F. Pempinelli (World Scientific, Singapore, 1996), pages 67–74.

    Google Scholar 

  35. R. Conte, M. Musette, and A.M. Grundland, Bäcklund transformation of partial differential equations from the Painlevé-Gambier classification, II. Tzitzéica equation, J. Math. Phys. 40 (1999), 2092–2106.

    MathSciNet  ADS  MATH  Google Scholar 

  36. C.M. Cosgrove, Painlevé classification of all semilinear partial differential equations of the second-order I. Hyperbolic equations in two independent variables, Stud. Appl. Math. 89 (1993), 1–61.

    MathSciNet  MATH  Google Scholar 

  37. C.M. Cosgrove, Painlevé classification of all semilinear partial differential equations of the second-order II. Parabolic and higher dimensional equations, Stud. Appi. Math. 89 (1993), 95–151.

    MathSciNet  MATH  Google Scholar 

  38. M.C. Cross and P.C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65 (1993), 851–1112.

    ADS  Google Scholar 

  39. M.M. Crum, Associated Sturm-Liouville systems, Quart. J. Math. Oxford 6 (1955), 121–127.

    MathSciNet  ADS  MATH  Google Scholar 

  40. G. Darboux, Sur une proposition relative aux équations linéaires, C. R. Acad. Sc. Paris 94 (1882), 1456–1459.

    Google Scholar 

  41. G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, vol. III (Gauthier-Villars, Paris, 1894). Reprinted, Théorie générale des surfaces (Chelsea, New York, 1972). Reprinted (Gabay, Paris, 1993).

    MATH  Google Scholar 

  42. R.K. Dodd and R.K. Bullough, Polynomial conserved densities for the sine-Gordon equations, Proc. Roy. Soc. London A 352 (1977), 481–503.

    MathSciNet  ADS  Google Scholar 

  43. R.K. Dodd and J.D. Gibbon, The prolongation structure of a higher-order Korteweg-de Vries equation, Proc. Roy. Soc. London A 358 (1977), 287–296

    MathSciNet  ADS  Google Scholar 

  44. P.G. Drazin and R.S. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, 1989).

    MATH  Google Scholar 

  45. F.B. Estabrook and H.D. Wahlquist, J. Math. Phys. 17 (1976), 1293–1297.

    MathSciNet  ADS  MATH  Google Scholar 

  46. A.S. Fokas and Q.-M. Liu, Nonlinear interaction of traveling waves of nonintegrable equations, Phys. Rev. Lett. 72 (1994), 3293–3296.

    MathSciNet  ADS  MATH  Google Scholar 

  47. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (1961), 445–466.

    ADS  Google Scholar 

  48. A.P. Fordy and J. Gibbons, Factorization of operators I. Miura transformations, J. Math. Phys. 21 (1980), 2508–2510.

    MathSciNet  ADS  MATH  Google Scholar 

  49. A.P. Fordy and J. Gibbons, Factorization of operators. II, J. Math. Phys. 22 (1981), 1170–1175.

    MathSciNet  ADS  MATH  Google Scholar 

  50. A.P. Fordy, The Hénon-Heiles system revisited, Physica D 52 (1991), 204–210.

    MathSciNet  ADS  MATH  Google Scholar 

  51. A.R. Forsyth 1906, Theory of differential equations. Part IV (vol. VI) Partial differential equations (Cambridge University Press, Cambridge, 1906). Reprinted (Dover, New York, 1959).

    Google Scholar 

  52. L. Gagnon and P. Winternitz, Symmetry classes of variable coefficient nonlinear Schrödinger equations, J. Phys. A 26 (1993), 7061–7076.

    MathSciNet  ADS  MATH  Google Scholar 

  53. B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes, Thèse, Paris (1909); Acta Math. 33 (1910), 1–55.

    MathSciNet  Google Scholar 

  54. C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095–1097.

    ADS  MATH  Google Scholar 

  55. E. Goursat, Cours d’analyse mathématique (Gauthier-Villars, Paris, 1924). English translation, A course in Mathematical Analysis (Dover, New York, 1956).

    MATH  Google Scholar 

  56. E. Goursat, Le problème de Bäcklund, Mémorial des sciences mathématiques, fascicule 6 (Gauthier-Villars, Paris, 1925). (This volume contains an extensive bibliography of early papers on Bäcklund transformations.)

    Google Scholar 

  57. S.E. Harris, Conservation laws for a nonlinear wave equation, Non-linearity 9 (1996), 187–208.

    ADS  MATH  Google Scholar 

  58. R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971), 1192–1194.

    ADS  MATH  Google Scholar 

  59. R. Hirota, A new form of Bäcklund transformation and its relation to the inverse scattering, Prog. Theor. Phys. 52 (1974), 1498–1512.

    ADS  MATH  Google Scholar 

  60. R. Hirota, Exact solutions to the equation describing “cylindrical solitons”, Phys. Lett.A 71 (1979), 393–

    MathSciNet  ADS  Google Scholar 

  61. R. Hirota, Direct methods in soliton theory, Solitons, eds. R.K. Bullough and P.J. Caudrey, Springer Topics in Current Physics (Springer, Berlin, 1980), pages 157–176.

    Google Scholar 

  62. R. Hirota and J. Satsuma, N-soliton solutions of model equations for shallow water waves, J. Phys. Soc. Japan Letters 40 (1976), 611–612.

    MathSciNet  ADS  Google Scholar 

  63. R. Hirota and J. Satsuma, Nonlinear evolution equations generated from the Bäcklund transformation for the Boussinesq equation, Prog. Theor. Phys. 57 (1977), 797–807.

    MathSciNet  ADS  MATH  Google Scholar 

  64. R. Hirota and J. Satsuma, A simple structure of superposition formula of the Bäcklund transformation, J. Phys. Soc. Japan 45 (1978), 1741–1750.

    ADS  Google Scholar 

  65. L. Hlavaty, The Painlevé analysis of damped KdV equation, J. Phys. Soc. Japan 55 (1986), 1405–1406.

    MathSciNet  ADS  Google Scholar 

  66. N. Joshi, Painlevé property of general variable-coefficient versions of the Korteweg-de Vries and non-linear Schrödinger equations, Phys. Lett. A 125 (1987), 456–460.

    MathSciNet  ADS  Google Scholar 

  67. M. Jimbo, M.D. Kruskal, and T. Miwa, Painlevé test for the self-dual Yang-Mills equation, Phys. Lett. A 92 (1982), 59–60.

    MathSciNet  ADS  Google Scholar 

  68. D.J. Kaup, On the inverse scattering problem for cubic eigenvalue problems of the classψitXxx + 6Qψitx + 6Rψ = λψ Stud. Appl. Math. 62 (1980), 189–216.

    MathSciNet  MATH  Google Scholar 

  69. T. Kawahara and M. Tanaka, Interactions of traveling fronts: an exact solution of a nonlinear diffusion equation, Phys. Lett. A 97 (1983), 311–314.

    MathSciNet  ADS  Google Scholar 

  70. A.N. Kolmogorov, I.G. Petrovskii, and N.S. Piskunov, The study of a diffusion equation, related to the increase of the quantity of matter, and its application to one biological problem, Bulletin de l’Université d’État de Moscou, série internationale, section A Math. Méc. 1 (1937), 1–26.

    Google Scholar 

  71. M.D. Kruskal, R.M. Miura, C.S. Gardner, and N.J. Zabusky, Korteweg-de Vries equation and generalisations. V. Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys. 11 (1970), 952–960.

    MathSciNet  ADS  MATH  Google Scholar 

  72. K. Konno and M. Wadati, Simple derivation of Bäcklund transformation from Riccati form of inverse method, Prog. Theor. Phys. 53 (1975), 1652–1656.

    MathSciNet  ADS  MATH  Google Scholar 

  73. D.J. Korteweg and G. de Vrics, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39 (1895), 422–443.

    Google Scholar 

  74. N.A. Kudryashov, On types of nonlinear nonintegrable equations with exact solutions, Phys. Lctt. A 155 (1991), 269–275.

    MathSciNet  ADS  Google Scholar 

  75. A. Kundu, Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger type equations, J. Math. Phys. 25 (1984), 3433–3438.

    MathSciNet  ADS  Google Scholar 

  76. A. Kundu, Exact solutions to higher-order nonlinear equations through gauge transformation, Physica D 25 (1987), 399–406.

    MathSciNet  ADS  MATH  Google Scholar 

  77. A. Kundu, Comments on the Eckhaus PDE iψitt + ψitxx + 2(∣ψ∣2)itxψ + ∣ψ∣4ψ = 0, Inverse Problems 4 (1988), 1143–1144.

    MathSciNet  ADS  MATH  Google Scholar 

  78. Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys. 55 (1976), 356–369.

    ADS  Google Scholar 

  79. G.L. Lamb Jr., Propagation of ultrashort optical pulses, Phys. Lett. A 25 (1967), 181–182.

    ADS  Google Scholar 

  80. G.L. Lamb Jr., Analytical descriptions of ultrashort optical pulse propagation in a resonant medium, Rev. Mod. Phys. 43 (1971), 99–124.

    MathSciNet  ADS  Google Scholar 

  81. G.L. Lamb Jr., Bäcklund transformations for certain nonlinear evolution equations, J. Math. Phys. 15 (1974), 2157–2165.

    MathSciNet  ADS  Google Scholar 

  82. P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490.

    MathSciNet  MATH  Google Scholar 

  83. D. Levi, O. Ragnisco, and A. Sym, Bäcklund transformations vs. the dressing method, Lett. Nuov. Cimento 33 (1982), 401–406.

    Google Scholar 

  84. D. Levi and O. Ragnisco, Bäcklund transformations for chiral field equations, Phys. Lett. A 87, 381-384.

    Google Scholar 

  85. D. Levi, O. Ragnisco, and A. Sym, Dressing method vs. classical Dar-boux transformation, II Nuovo Cimento B 83 (1984), 34–41.

    MathSciNet  ADS  Google Scholar 

  86. D. Levi and O. Ragnisco, Nonisospectral deformations and Darboux transformations for third-order spectral problem, Inverse Problems 4 (1988), 815–828.

    MathSciNet  ADS  MATH  Google Scholar 

  87. Q.M. Liu and A.S. Fokas, Exact interaction of solitary waves for certain nonintegrable equations, J. Math. Phys. 37 (1996), 324–345.

    MathSciNet  ADS  MATH  Google Scholar 

  88. P. Manneville, The Kuramoto-Sivashinsky equation: a progress report, Propagation in systems far from equilibrium, eds. J. Weisfreid, H.R. Brand, P. Manneville, G. Albinet, and N. Boccara (Springer, Berlin, 1988), pages 265–280.

    Google Scholar 

  89. J.B. McLeod and P.J. Olver, The connection between partial differential equations soluble by inverse scattering and ordinary differential equations of Painlevé type, SLAM J. Math. Anal. 14 (1983), 488–506.

    MathSciNet  MATH  Google Scholar 

  90. Y. Matsuno, Bilinear Transformation Method (Academic Press, London, 1984).

    MATH  Google Scholar 

  91. V.B. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics (Springer-Verlag, 1991).

    Google Scholar 

  92. A.V. Mikhailov, Integrability of a two-dimensional generalization of the Toda chain, Pis’ma Zh. Eksp. Teor. Fiz. 30 (1979), 443–448; Soviet Physics JETP Letters 30 (1979), 414-418.

    Google Scholar 

  93. A.V. Mikhailov, The reduction problem and the inverse scattering method, Physica D 3 (1981), 73–117.

    ADS  MATH  Google Scholar 

  94. R.M. Miura, C.S. Gardner, and M.D. Kruskal, Korteweg-de Vries equation and generalisations. II. Existence of conservation laws and constants of motion, J. Math. Phys. 9 (1968), 1204–1209.

    MathSciNet  ADS  MATH  Google Scholar 

  95. H.C. Morris, Prolongation structures and a generalized inverse scattering problem, J. Math. Phys. 17 (1976), 1867–1869.

    ADS  MATH  Google Scholar 

  96. Th.-F. Moutard, Note sur les équations différentielles linéaires du second ordre, C. R. Acad. Sc. Paris 80 (1875), 729–733, Journal de l’École Polytechnique 45 (1878), 1-11.

    Google Scholar 

  97. M. Musette, Insertion of the Darboux transformation in the invariant Painlevé analysis of nonlinear partial differential equations, Painlevé Transcendents, Their Asymptotics and Physical Applications, eds. D. Levi and P. Winternitz (Plenum Publishing Corp., New York, 1992), pages 197–209.

    Google Scholar 

  98. M. Musette and R. Conte, Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations, J. Math. Phys. 32 (1991), 1450–1457.

    MathSciNet  ADS  MATH  Google Scholar 

  99. M. Musette and R. Conte, Solitary waves and Lax pairs from polynomial expansions of nonlinear differential equations, Nonlinear evolution equations and dynamical systems, 161–170, eds. M. Boiti, L. Martina, and F. Pempinelli (World Scientific, Singapore, 1992).

    Google Scholar 

  100. M. Musette and R. Conte, The two-singular manifold method, I. Modified KdV and sine-Gordon equations, J. Phys. A 27 (1994), 3895–3913.

    MathSciNet  ADS  MATH  Google Scholar 

  101. M. Musette and R. Conte, Bäcklund transformation of partial differential equations from the Painlevé-Gambier classification, I. Kaup-Kupershmidt equation, J. Math. Phys. 39 (1998), 5617–5630.

    MathSciNet  ADS  MATH  Google Scholar 

  102. A.C. Newell and J.A. Whitehcad, Finite bandwidth, finite amplitude convection, J. Fluid Mech. 38 (1969), 279–303.

    ADS  MATH  Google Scholar 

  103. K. Nozaki and N. Bckki, Pattern selection and spatiotemporal transition to chaos in the Ginzburg-Landau equation, Phys. Rev. Lett. 51 (1983), 2171–2174.

    ADS  Google Scholar 

  104. K. Nozaki and N. Bckki, Exact solutions of the generalized Ginzburg-Landau equation, J. Phys. Soc. Japan 53 (1984), 1581–1582.

    MathSciNet  ADS  Google Scholar 

  105. P.O. Olver, Euler operators and conservation laws of the BBM equation, Math. Proc. Camb. Phil. Soc. 85 (1979), 143–160.

    MathSciNet  MATH  Google Scholar 

  106. P. Painlevé, Sur les équations différentielles du second ordre à points critiques fixes, C. R. Acad. Sc. Paris 143 (1906), 1111–1117.

    Google Scholar 

  107. N.R. Pereira and L. Stenflo, Nonlinear Schrödinger equation including growth and damping, Phys. Fluids 20 (1977), 1733–1743.

    MathSciNet  ADS  MATH  Google Scholar 

  108. A. Pickcring, A new truncation in Painlevé analysis, J. Phys. A 26 (1993), 4395–4405.

    MathSciNet  ADS  Google Scholar 

  109. A. Pickering, The singular manifold method revisited, J. Math. Phys. 37 (1996), 1894–1927.

    MathSciNet  ADS  MATH  Google Scholar 

  110. D.W. McLaughlin and A.C. Scott, A restricted Bäcklund transformation, J. Math. Phys. 14 (1973), 1817–1828.

    MathSciNet  ADS  MATH  Google Scholar 

  111. A.V. Porubov, Exact travelling wave solutions of nonlinear evolution equation of surface waves in a convecting fluid, J. Phys. A 26 (1993), L797-L800.

    Google Scholar 

  112. A.V. Porubov, Periodical solution to the nonlinear dissipative equation for surface waves in a convecting liquid layer, Phys. Lett. A 211 (1996), 391–394.

    MathSciNet  ADS  Google Scholar 

  113. G.R.W. Quispcl, F.W. Nijhoff, and H.W. Capei, Linearization of the Boussinesq equation and the modified equation, Phys. Lett. A 91 (1982), 143–145.

    MathSciNet  ADS  Google Scholar 

  114. Lord Rayleigh, On waves, Phil. Mag. 1 (1876), 257–279.

    Google Scholar 

  115. C. Rogers and W.F. Shadwick, Bäcklund Transformations and Their Applications (Academic Press, New York, 1982).

    MATH  Google Scholar 

  116. C. Rogers and S. Cariilo, On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kupershmidt hierarchies, Physica Scripta 36 (1987), 865–869.

    MathSciNet  ADS  MATH  Google Scholar 

  117. J.S. Russcll, Report on waves, Rep. 14th Meet. Brit. Assoc. Adv. Sci., York, 311–390 (London, John Murray, 1844).

    Google Scholar 

  118. J. Satsuma and D.J. Kaup, A Bäcklund transformation for a higher-order Korteweg-de Vries equation, J. Phys. Soc. Japan 43 (1977), 692–697.

    MathSciNet  ADS  Google Scholar 

  119. K. Sawada and T. Kotera, K.d. V.-like equation, Prog. Theor. Phys. 51 (1974), 1355–1367.

    MathSciNet  ADS  MATH  Google Scholar 

  120. A.C. Scott, F.Y. Chu and D.W. McLaughlin, The Soliton: A New Concept in Applied Science, Proc. IEEE 61 (1973), 1443–1483.

    MathSciNet  ADS  Google Scholar 

  121. M. Tajiri, Similarity reductions of the one and two-dimensional nonlinear Schrödinger equations, J. Phys. Soc. Japan 52 (1983), 1908–1917.

    MathSciNet  ADS  Google Scholar 

  122. G. Tzitzéica, Sur une nouvelle classe de surfaces, Rendiconti del Circolo Matematico di Palermo 25 (1908), 180–187; 28 (1909), 210-216.

    MATH  Google Scholar 

  123. G. Tzitzéica, Sur une nouvelle classe de surfaces, C. R. Acad. Sc. Paris 150 (1910), 955–956, 150 (1910), 1227-1229.

    Google Scholar 

  124. F. Ursell, The long-wave paradox in the theory of gravity waves, Proc. Camb. Philos. Soc. 49 (1953), 685–694.

    MathSciNet  MATH  Google Scholar 

  125. M. Wadati, Bäcklund transformation for solutions of the Modified Korteweg-de Vries equation, J. Phys. Soc. Japan 36(1979), 1498.

    Google Scholar 

  126. M. Wadati, K. Konno, and Y.-H. Ichikawa, A generalization of the inverse scattering method, J. Phys. Soc. Japan 46 (1979), 1965–1966.

    MathSciNet  ADS  Google Scholar 

  127. M. Wadati, H. Sanuki, and K. Konno, Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws, Prog. Theor. Phys. 53 (1975), 419–436.

    MathSciNet  ADS  MATH  Google Scholar 

  128. H.D. Wahlquist and F.B. Estabrook, Bäcklund transformation for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett. 31 (1973), 1386–1390.

    MathSciNet  ADS  Google Scholar 

  129. H.D. Wahlquist and F.B. Estabrook, Prolongation structures of nonlinear evolution equations, J. Math. Phys. 16 (1975), 1–7.

    MathSciNet  ADS  MATH  Google Scholar 

  130. J. Weiss, The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative, J. Math. Phys. 24 (1983), 1405–1413.

    MathSciNet  ADS  MATH  Google Scholar 

  131. J. Weiss, On classes of integrable systems and the Painlevé property, J. Math. Phys. 25 (1984), 13–24.

    MathSciNet  ADS  MATH  Google Scholar 

  132. J. Weiss, The sine-Gordon equations: Complete and partial integrability, J. Math. Phys. 25 (1984), 2226–2235.

    MathSciNet  ADS  MATH  Google Scholar 

  133. J. Weiss, The Painlevé property and Bäcklund transformations for the sequence of Boussinesq equations, J. Math. Phys. 26 (1985), 258–269.

    MathSciNet  ADS  MATH  Google Scholar 

  134. J. Weiss, M. Tabor, and G. Carnevale, The Painlevé property for partial differential equations, J. Math. Phys. 24 (1983), 522–526.

    MathSciNet  ADS  MATH  Google Scholar 

  135. G.B. Whitham, Nonlinear dispersive waves, Proc. Roy. Soc. London A, 283 (1965), 238–261.

    MathSciNet  ADS  MATH  Google Scholar 

  136. P. Winternitz and J.-P. Gazeau, Allowed transformations and symmetry classes of variable coefficient Korteweg-de Vries equations, Phys. Lett. A 167 (1992), 246–250.

    MathSciNet  ADS  Google Scholar 

  137. N. Zabusky and M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243.

    ADS  MATH  Google Scholar 

  138. V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. Eksp. Teor. Fiz. 61 (1971), 118–134; Soviet physics JETP 34 (1972), 62-69.

    Google Scholar 

  139. V.E. Zakharov and A.B. Shabat, Interaction between solitons in a stable medium, Zh. Eksp. Teor. Fiz. 64 (1973), 1627–1639; Soviet Physics JETP 37 (1973), 823-828.

    Google Scholar 

  140. V.E. Zakharov, On stochastization of one-dimensional chains of nonlinear oscillators, Zh. Eksp. Teor. Fiz. 65 (1973), 219–225; Soviet Physics JETP 38 (1974), 108-110.

    Google Scholar 

  141. V.E. Zakharov and A.B. Shabat, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I, Funktsional’nyi Analiz i Ego Prilozheniya 8 (1974), 43–53; Func. Anal. Appl. 8 (1974), 226-235.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Musette, M. (1999). Painlevé Analysis for Nonlinear Partial Differential Equations. In: Conte, R. (eds) The Painlevé Property. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1532-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1532-5_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98888-7

  • Online ISBN: 978-1-4612-1532-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics