Skip to main content

Painlevé Transcendents in Two-Dimensional Topological Field Theory

  • Chapter
The Painlevé Property

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

This paper is devoted to the theory of WDVV equations of associativity. This remarkable system of nonlinear differential equations was discovered by E. Witten [85]and R. Dijkgraaf, E. Verlinde, and H. Verlinde [24]in the beginning of the 1990s. It was first derived as equations for the so-called primary free energy of a family of two-dimensional topological field theories. Later it proved to be an efficient tool in the solution of problems of the theory of Gromov-Witten invariants, reflection groups and singularities, and integrable hierarchies.

Here we mainly consider the relationships of WDVV to the theory of Pain-levé equations. This is a two-way connection. First, any solution to WDVV satisfying certain semisimplicity conditions can be expressed via Painle-vé-type transcendents. Conversely, theory of WDVV works as a source of remarkable particular solutions of the Painlevé equations.

This chapter is an extended version of the lecture notes of a course given at the 1996 Cargèse summer school, “The Painlevé Property: One Century Later.” It is organized as follows.

In Section 1 we give a sketch of the ideas of two-dimensional topological field theory, we formulate WDVV, and give the main examples of solutions coming from quantum cohomology and from singularity theory. In Section 2 we give a coordinate-free reformulation of WDVV introducing the notion of a Frobenius manifold. We also construct the first main geometrical object, namely the deformed affine connection on a Frobenius manifold. The monodromy of the deformed connection at the origin gives us the first set of important invariants of Frobenius manifolds. In Section 3 we define the class of semisimple Frobenius manifolds. In physics these correspond to two-dimensional topological field theories with all relevant perturbations. We construct the so-called canonical coordinates on such manifolds. In Section 4 we complete the classification of semisimple Frobenius manifolds in terms of monodromy data of a certain universal linear differential operator with rational coefficients. We give a nontrivial example of computation of the monodromy data in quantum cohomology. In the last section we develop a “mirror construction” representing the principal geometrical objects on a semisimple Frobenius manifold by residues and oscillatory integrals of a family of analytic functions on Riemann surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S.-I. Amari, Differential-Geometric Methods in Statistics, Lecture Notes in Statistics 28 (Springer, Berlin, 1985).

    Google Scholar 

  2. V.I. Arnol’d, Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976), 557–582.

    Article  MathSciNet  ADS  Google Scholar 

  3. V.I. Arnol’d, Singularities of Caustics and Wave Fronts (Kluwer, Dordrecht, 1990).

    Google Scholar 

  4. V.I. Arnol’d, S.M. Gusein-Zade, and A.N. Varchenko, Singularities of Differentiable Maps, volumes I, II (Birkhäuser, Boston, 1988).

    MATH  Google Scholar 

  5. M.F. Atiyah, Topological quantum field theories, Publ. Math. I.H.E.S. 68 (1988), 175.

    MathSciNet  MATH  Google Scholar 

  6. M. Audin, An introduction to Probenius manifolds, moduli spaces of stable maps and quantum cohomology, Preprint (1997).

    Google Scholar 

  7. W. Baiser, W.B. Jurkat, and D.A. Lutz, Birkhoff invariants and Stokes multipliers for meromorphic linear differential equations, J. Math. Anal. Appl. 71 (1979), 48 94.

    Article  MathSciNet  Google Scholar 

  8. W. Baiser, W.B. Jurkat, and D.A. Lutz, On the reduction of connection problems for differential equations with an irregular singular point to ones with only regular singularities, SIAM J. Math. Anal. 12 (1981), 691–721.

    Article  MathSciNet  Google Scholar 

  9. S. Barannikov, M. Kontsevich, Frobenius manifolds and formality of Lie algebras of polynomial vector fields, alg-geom/9710032.

    Google Scholar 

  10. K. Behrend, Gromov-Witten invariants in algebraic geometry, Inv. Math. 127 (1997), 601–627.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. A. Beauville, Quantum cohomology of complete intersections, alg-geom/9501008.

    Google Scholar 

  12. J. Birman, Braids, Links, and Mapping Class Groups (Princeton Univ. Press, Princeton, 1974).

    Google Scholar 

  13. A. Blanco Cedeño, On polynomial solutions of equations of associativity, Preprint ICTP IC/97/152 (1997).

    Google Scholar 

  14. B. Blok and A. Varchenko, Topological conformai field theories and the flat coordinates, Int. J. Mod. Phys. A7 (1992), 1467.

    MathSciNet  ADS  Google Scholar 

  15. N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5 et 6 (Masson, Paris, 1981).

    MATH  Google Scholar 

  16. E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955).

    MATH  Google Scholar 

  17. P. Candelas, X.C. de la Ossa, P.S. Green, and L. Parkes, A pair of Calabi Yau manifolds as an exactly soluble superconformai theory, Nucl. Phys. B359 (1991), 21–74.

    Article  ADS  Google Scholar 

  18. S. Cocotti and C. Vafa, Topological-antitopological fusion, Nucl. Phys. B367 (1991), 359–461.

    Article  ADS  Google Scholar 

  19. S. Cocotti and C. Vafa, On classification of N = 2 supersymmetric theories, Comm. Math. Phys. 158 (1993), 569–644.

    Google Scholar 

  20. H.S.M. Coxeter, Regular Polytopes (Macmillan, New York, 1963).

    MATH  Google Scholar 

  21. P. Di Francesco and C. Itzykson, Quantum intersection rings, The Moduli Space of Curves, eds. R. Dijkgraaf, C. Faber, and G. van de Geer (Birkhäuser, Basel, 1995), pages 81–148.

    Google Scholar 

  22. R. Dijkgraaf, Intersection theory, integrable hierarchies and topological field theory, New symmetry principles in quantum field theory, ed. C. Itzykson, NATO ASI series (Plenum, New York, 1991), pages 95–158. hep-th/9201003.

    Google Scholar 

  23. R. Dijkgraaf, Notes on topological string theory and 2-D quantum gravity, String theory and quantum gravity, ed. A.W. Smith (World Scientific, River Edge NJ, 1990), pages 91–156.

    Google Scholar 

  24. R. Dijkgraaf, E. Verlinde, and H. Verlinde, Topological strings in d < 1, Nucl. Phys.B 352 (1991), 59–

    Article  MathSciNet  ADS  Google Scholar 

  25. R. Dijkgraaf and E. Witten, Mean field theory, topological field theory, and multimatrix models, Nucl. Phys. B 342 (1990), 486–522.

    Article  MathSciNet  ADS  Google Scholar 

  26. B. Dubrovin, Differential geometry of moduli spaces and its application to soliton equations and to topological field theory, Preprint No. 117, Scuola Normale Superiore, Pisa (1991).

    Google Scholar 

  27. B. Dubrovin, Hamiltonian formalism of Whitham-type hierarchies and topological Landau-Ginsburg models, Comm. Math. Phys. 145 (1992), 195–207.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. B. Dubrovin, Integrable systems in topological field theory, Nucl. Phys. B 379 (1992), 627 689.

    Article  MathSciNet  ADS  Google Scholar 

  29. B. Dubrovin, Geometry and integrability of topological-antitopological fusion, Comm. Math. Phys. 152 (1993), 539–564.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. B. Dubrovin, Integrable systems and classification of 2-dimensional topological field theories, Integrable Systems, eds. O. Babelon, O. Cartier, and Y. Kosmann-Schwarbach (Birkhäuser, Basel, 1993), pages 313–359.

    Google Scholar 

  31. B. Dubrovin, Differential geometry of the space of orbits of a Coxeter group, Preprint SISSA-29/93/FM (February 1993).

    Google Scholar 

  32. B. Dubrovin, Geometry of 2-D topological field theories, Integrable Systems and Quantum Groups, eds. M. Francaviglia and S. Greco, Lecture Notes in Mathematics 1620 (Springer, Berlin, 1996), pages 120–348.

    Google Scholar 

  33. B. Dubrovin, Flat pencils of metrics and Frobenius manifolds, Integrable Systems and Algebraic Geometry, eds. M.-H. Saito, Y. Shimizu, and K. Ueno, (World Scientific, Singapore, 1998), pages 47–72. math.DG/9803106.

    Google Scholar 

  34. B. Dubrovin and M. Mazzocco, Monodromy of certain Painlevé-VI transcendents and reflection groups, Preprint SISSA 149/97/FM (1997).

    Google Scholar 

  35. B. Dubrovin and Zhang Y., Extended affine Weyl groups and Frobenius manifolds, Compositio Math. 111 (1998), 167–219.

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Dubrovin and Zhang Y., Bihamiltonian hierarchies in 2-D topological field theory at one-loop approximation, Comm. Math. Phys. 198 (1998), 311–361. hep-th/9712232.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. A. Duval and C. Mitschi, Matrices de Stokes et groupe de Galois des équations hypergéométriques confluentes généralisées, Pacific J. Math. 138 (1989), 25–56.

    MathSciNet  MATH  Google Scholar 

  38. T. Eguchi, H. Kanno, Y. Yamada, and Yang S.-K, Topological strings, flat coordinates and gravitational descendants, Phys. Lett. B3O5 (1993), 235–241.

    MathSciNet  ADS  Google Scholar 

  39. T. Eguchi, Y. Yamada, and Yang S.-K., Topological field theories and the period integrals, Mod. Phys. Lett. A 8 (1993), 1627–1638.

    Article  MathSciNet  ADS  Google Scholar 

  40. T. Eguchi, Y. Yamada, and Yang S.-K., On the genus expansion in the topological string theory, Rev. Math. Phys. 7 (1995), 279.

    Article  MathSciNet  MATH  Google Scholar 

  41. F. R. Gantmacher, The Theory of Matrices (Chelsea, New York, 1960).

    Google Scholar 

  42. A.B. Givental, Convolution of invariants of groups generated by reflections, and connections with simple singularities of functions, Funct. Anal. 14 (1980), 81–89.

    Article  MathSciNet  MATH  Google Scholar 

  43. A.B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 13 (1996), 613–663. alg-geom/9603021 (1996).

    Article  MathSciNet  Google Scholar 

  44. A.B. Givental, Stationary phase integrals, quantum Toda lattice, flag manifolds, and the mirror conjecture, alg-geom/9612001 (1996).

    Google Scholar 

  45. A.B. Givental, A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics, Progr. Math. 160 (Birkhäuser, Boston, 1998), pages 141–175.

    Chapter  Google Scholar 

  46. A.B. Givental, Elliptic Gromov-Witten invariants and the generalized mirror conjecture, math.AG/9803053 (1998).

    Google Scholar 

  47. M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. N. Hitehin, Poncelet polygons and the Painlevé equations, Geometry and Analysis, ed. Ramanan (Tata Inst. of Fundamental Research, Bombay, 1995), pages 151–185.

    Google Scholar 

  49. N. Hitehin, Probenius manifolds, With notes by D. Calderbank. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 12, Gauge Theory and Symplectic Geometry (Montreal, 1995), pages 69–112

    Google Scholar 

  50. K. Hori, Constraints for topological strings in D ≥ 1, Nucl. Phys. B 439 (1995), 395–420.

    Article  MathSciNet  ADS  Google Scholar 

  51. A.R. Its and V.Yu. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lecture Notes in Mathematics 1191 (Springer, Berlin, 1986).

    Google Scholar 

  52. M. Jimbo and T. Miwa, Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II. Physica D2 (1981), 407–448.

    MathSciNet  ADS  Google Scholar 

  53. R. Kaufmann, The geometry of moduli spaces of pointed curves, the tensor product in the theory of Frobenius manifolds and the explicit Künneth formula in quantum cohomology (Ph.D. thesis, Max Planck Institut in Bonn, 1997).

    Google Scholar 

  54. M. Kontsevich, Intersection theory on the moduli space of curves, Funktsional’nyi Analiz i Ego Prilozheniya 25 (1991), 50–57; Punct. Anal. Appl. 25 (1991), 123-129.

    Article  MathSciNet  Google Scholar 

  55. M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), 1–23.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. M. Kontsevich, Enumeration of rational curves via torus action, Comm. Math. Phys. 164 (1994), 525–562.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. M. Kontsevich and Yu.I. Manin, Gromov-Witten classes, quantum cohomology and enumerative geometry, Comm. Math. Phys. 164 (1994), 525 562.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. M. Kontsevich and Yu.I. Manin, Quantum cohomology of a product (with Appendix by R. Kaufmann), Inv. Math. 124 (1996), 313–339.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. I.M. Krichever, The T function of the universal Whitham hierarchy, matrix models and topological field theories, Comm. Pure Appl. Math. 47 (1994), 437–475.

    Article  MathSciNet  MATH  Google Scholar 

  60. W. Lerche and N. Warner, Exceptional Seiberg-Witten Geometry from ALE Fibrations, hep-th/9608183 (1996).

    Google Scholar 

  61. B.-H. Lian, K. Liu, and S.-T. Yau, Mirror principle I, alg-geom/9712011 (1997).

    Google Scholar 

  62. E. Looijenga, A period mapping for certain semi-universal deformations, Compositio Math. 30 (1975), 299–316.

    MathSciNet  MATH  Google Scholar 

  63. A. Losev, “Hodge strings” and elements of K. Saito’s theory of the primitive forms, hep-th/9801179 (1998).

    Google Scholar 

  64. Y. L. Luke, Mathematical functions and their approximations (Academic Press, New York, 1975).

    MATH  Google Scholar 

  65. B. Malgrange, Équations différentielles à coefficients polynomiaux (Birkhäuser, Basel, 1991).

    MATH  Google Scholar 

  66. D. McDuff and D. Salamon, J-holomorphic curves and quantum cohomology (American Mathematical Society, Providence RI, 1994).

    MATH  Google Scholar 

  67. Yu.I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Preprint MPI 96–113 (1996).

    Google Scholar 

  68. Yu.I. Manin, Sixth Painlevé equation, universal elliptic curve, and mirror of P2, Amer. Math. Soc. Transi. (2) 186 (1998), 131–151. alg-geom/9605010

    MathSciNet  Google Scholar 

  69. Yu.I. Manin, Three constructions of Frobenius manifolds: a comparative study, math.QA/9801006.

    Google Scholar 

  70. Yu.I. Manin and S.A. Merkulov, Semisimple Frobenius (super)mani-folds and quantum cohomology of Pr, alg-geom/9702014 (1997).

    Google Scholar 

  71. T. Miwa, Painlevé property of monodromy presereving equations and the analyticity of T-functions, Publ. RIMS 17 (1981), 703–721.

    Article  MathSciNet  MATH  Google Scholar 

  72. S. Piunikhin, Quantum and Floer cohomology have the same ring structure, Preprint MIT (March 1994).

    Google Scholar 

  73. Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, Math. Res. Lett. 1 (1994), 269–278.

    MathSciNet  MATH  Google Scholar 

  74. C. Sabbah, Frobenius manifolds: isomonodromic deformations and infinitesimal period mappings, Exposition. Math. 16 (1998), 1–57.

    MathSciNet  MATH  Google Scholar 

  75. V. Sadov, On equivalence of Floer’s and quantum cohomology, Preprint HUTP-93/A027 (1993).

    Google Scholar 

  76. K. Saito, On a linear structure of a quotient variety by a finite reflection group, Publ. RIMS, Kyoto Univ., 29 (1993), 535–579.

    Article  MATH  Google Scholar 

  77. K. Saito, Period mapping associated to a primitive form, Publ. RIMS 19 (1983), 1231–1264.

    Article  MATH  Google Scholar 

  78. K. Saito, T. Yano, and J. Sekeguchi, On a certain generator system of the ring of invariants of a finite reflection group, Comm. in Algebra 8(4) (1980), 373 408.

    Google Scholar 

  79. I. Satake, Flat structure for the simple elliptic singularity of type ∼E 6 and Jacobi forms, Proc. Japan Acad. Ser. A Math. Sci. 69 (1997), no. 7. hep-th/9307009.

    Google Scholar 

  80. J. Segert, Frobenius manifolds from Yang-Mills instantons, Math. Res. Lett. 5 (1998), 327–344. dg-ga/9710031.

    MathSciNet  MATH  Google Scholar 

  81. A. Takahashi, Primitive forms, topological LG models coupled to gravity and mirror symmetry, math.AG/9802059 (1998).

    Google Scholar 

  82. Tian Gang, Xu Geng, On the semisimplicity of the quantum cohomology algebra of complete intersections, alg-geom/9611035 (1996).

    Google Scholar 

  83. W. Wasow, Asymptotic expansions for ordinary differential equations (Wiley, New York, 1965).

    MATH  Google Scholar 

  84. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis (American Mathematical Society Press, New York, 1979).

    Google Scholar 

  85. E. Witten, On the structure of the topological phase of two-dimensional gravity, Nucl. Phys. B 340 (1990), 281–332.

    Article  MathSciNet  ADS  Google Scholar 

  86. E. Witten, Two-dimensional gravity and intersection theory on moduli space, Surv. Diff. Geom. 1 (1991), 243–210.

    MathSciNet  Google Scholar 

  87. E. Witten, Lectures on mirror symmetry, Essays on Mirror Manifolds, ed. S.-T Yau (International Press Co., Hong Kong, 1992).

    Google Scholar 

  88. T. Yano, Free deformation for isolated singularity, Sci. Rep. Saitama Univ. A 9 (1980), 61–70.

    Google Scholar 

  89. S.-T. Yau, ed., Essays on Mirror Manifolds (International Press Co., Hong Kong, 1992).

    MATH  Google Scholar 

  90. J.-B. Zuber, On Dubrovin’s topological field theories, Mod. Phys. Lett. A 9 (1994), 749–760.

    MathSciNet  ADS  Google Scholar 

  91. J.-B. Zuber, Graphs and reflection groups, Comm. Math. Phys. 179 (1996), 265 294.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  92. J.-B. Zuber, Generalized Dynkin diagrams and root systems and their folding, Topological field theory, primitive forms and related topics, eds. C.M. Kashiwara, A. Matsuo, K. Saito, and I. Satake (Birkhäuser, Basel, 1998), pages 453–493. hcp-th/9707046.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dubrovin, B. (1999). Painlevé Transcendents in Two-Dimensional Topological Field Theory. In: Conte, R. (eds) The Painlevé Property. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1532-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1532-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98888-7

  • Online ISBN: 978-1-4612-1532-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics