Skip to main content

Stand Structure in Terrestrial Ecosystems

  • Chapter
Methods in Ecosystem Science

Abstract

This chapter provides a brief overview of instrumentation and methods for characterizing vegetation structure at the stand level, where a stand is defined as an area of relatively uniform physical environmental conditions, vegetation structure, and plant community composition (Barbour et al. 1987). By vegetation structure we mean the three-dimensional distribution of aboveground phyto-mass integrated over some period of time. We will not consider the temporal components of stand structure, such as diurnal variation in leaf orientation or seasonal phenology, focusing instead on methods for estimating structural variables at a particular point in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, J.B.; Smith, M.O.; Gillespie, A.R. Imaging spectrometry: Interpretation based on spectral mixture analysis. In: Pieters C.M.; Englert P., eds. Remote Geochemical Analysis: Elemental and Mineralogical Composition. Vol. 7. New York: Cambridge Univ. Pr.; 1993: 145–166.

    Google Scholar 

  • Andrew, M.H.; Noble, I.R.; Lange, R.T.; Johnson, A.W. The measurement of shrub forage weight: Three methods compared. Aust. Range J. 3:74–82; 1981.

    Google Scholar 

  • Asrar, G.; Myneni, R.B.; Kanemasu, E.T. Estimation of plant-canopy attributes from spectral reflectance measurements. In: Asrar, G., ed. Theory and Applications of Optical Remote Sensing. New York: Wiley; 1989:252–296.

    Google Scholar 

  • Attema, E.P.W.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 13:357–364; 1978.

    Google Scholar 

  • Barbour, M.G.; Burk, J.H.; Pitt, W.D. Terrestrial Plant Ecology. 2nd ed. Menlo Park, CA: Benjamin Cummings; 1987.

    Google Scholar 

  • Barnes, W.L., Pagano, T.S.; Salomonson, V.V. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AMI. IEEE Trans. Geosci. Remote Sens. 36:1088–1100; 1998.

    Google Scholar 

  • Bidlake, W.R.; Black, R.A. Vertical distribution of leaf area in Larix occidentalis: A comparison of two estimation methods. Can. J. For. Res. 19:1131–1136; 1989.

    Google Scholar 

  • Blair, J.B.; Coyle, D.B. Vegetation and topography mapping with an airborne laser altimeter using a high-efficiency laser and a scannable field-of-view telescope. In: Proceedings of the Second International Airborne Remote Sensing Conference and Exhibition. Vol. 2; Ann Arbor, MI: Environmental Research Institute of Michigan (ERIM); 1996:403–407.

    Google Scholar 

  • Blair, J.B.; Coyle, D.B.; Bufton, J.L.; Harding, D.J. Optimization of an airborne laser altimeter for remote sensing of vegetation and tree canopies. Proc. IGARSS’94:939–941; 1994.

    Google Scholar 

  • Bonham, C.D. Methods of Vegetation Analysis. New York: Wiley; 1989.

    Google Scholar 

  • Brewer, K.R.W.; Hanif, H. Sampling with Unequal Probabilities. Lecture Notes in Statistics 15. New York: Springer-Verlag; 1983.

    Google Scholar 

  • Bush, T.F.; Ulaby, F.T. Radar return from a continuous vegetation canopy. IEEE Anten. Propag. AP-24:269–276; 1976.

    Google Scholar 

  • Carpenter, A.; West, N. Validating the reference-unit method of aboveground phyromass estimation on shrubs and herbs. Vegetatio 72:75–79; 1987.

    Google Scholar 

  • Causton, D.R. Biometrical, structural and physiological relationships among tree parts. In: Cannell, M.G.R.; Jackson, J.E., eds. Attributes of Trees as Crop Plants. Huntingdon, UK: National Environmental Research Council; 1985:137–159.

    Google Scholar 

  • Chen, S.G.; Ceulemans, R.; Impens, I. A Fractal-based Populus canopy structure model for the calculation of light interception. For. Ecol. Manage. 69:97–110; 1994.

    Google Scholar 

  • Chiariello, N.R.; Mooney, H.A.; Williams, K. Growth, carbon allocation, and cost of plant tissues. In: Pearcy, R.W.; Ehleringer, J.; Mooney, H.A.; Rundel, P.W., eds. Plant Physiological Ecology: Field Methods and Instrumentation. London: Chapman and Hall; 1989:327–365.

    Google Scholar 

  • Clark, D.B.; Clark, D.A.; Rich, P.M.; Weiss, S.; Oberbauer, S.F. Landscape-scale evaluation of understory light and canopy structure: Methods and application in a neotropical lowland rain forest. Can. J. For. Res. 26:747–757; 1996.

    Google Scholar 

  • Cohen, W.G.; Spies, T.A. Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery. Remote Sens. Environ. 41:1–17; 1992.

    Google Scholar 

  • Cohen, W.B.; Spies, T.A.; Bradshaw, G.A. Semivariograms of digital imagery for analysis of conifer canopy structure. Remote Sens. Environ. 34:167–178; 1990.

    Google Scholar 

  • Colwell, R.N., ed. Manual of Remote Sensing. Falls Church, VA: American Society of Photogrammetry and Remote Sensing; 1983.

    Google Scholar 

  • Cottam, G; Curtis, J.T. The use of distance measures in phytosociological sampling. Ecology 37:451–460; 1956.

    Google Scholar 

  • Crist, E.P.; Cicone, R.C. A physically-based transformation of Thematic Mapper data: The TM tasseled cap. IEEE Trans. Geosci. Remote Sens. GE-22:256–263. 1984.

    Google Scholar 

  • Curtis, K.S. Linear measurements. In: Brinker, R.C.; Minnick, R. The Surveying Handbook. 2nd ed. New York: Chapman and Hall; 1995:42–50.

    Google Scholar 

  • Daughtry, C.S.T. Direct measurements of canopy structure. Remote Sens. Rev. 5:45–60; 1990.

    Google Scholar 

  • Defries, R.S.; Field, C.B.; Fung, L; Justice, C.O.; et al. Mapping the land surface for global atmosphere-biosphere models: Toward continuous distributions of vegetations functional properties. J. Geophys. Res. Atmos. 100:20867–20882; 1995.

    Google Scholar 

  • Dobson, M.C.; Ulaby F.T.; Pierce L.E.; Sharik T.L.; Bergen, K.M.; Kellndorfer, J.; Kendra, J.R.; Li, E.; Lin, Y.C.; Nashashibi, A.; Sarabandi, K.; Siquiera, P. Estimation of forest biophysical characteristics in northern Michigan with SIR-C/X-SAR. IEEE Trans. Geosci. Remote Sens. 33:877–895; 1995.

    Google Scholar 

  • Earle, D.F. McGowan, A.A. Evaluation and calibration of an automated rising plate meter for estimating dry matter yield of pasture. Aust. J. Exp. Agric. Anim. Husb. 19:337–350; 1979.

    Google Scholar 

  • Etienne, M. Nondestructive methods for evaluating shrub biomass: A review. Acta Oecol. Oecol. Appl. 10:115–128; 1989.

    Google Scholar 

  • Everitt, J.H.; Escobar, D.E.; Cavazos, I.; Noriega, J.R.; Davis, M.R. A three-camera multispectral digital video imaging system. Remote Sens. Environ. 54:333–337; 1995.

    Google Scholar 

  • Fournier, R.A.; Landry, R.; August, N.M.; Fedosejevs, G.; Gauthier, R.P. Modelling light obstruction in three conifer forests using hemispherical photography and fine tree architecture. Agric. For. Meteorol. 82:47–72; 1996.

    Google Scholar 

  • Frank, D.A.; Mcnaughton, S.J. Aboveground biomass estimation with the canopy intercept method: A plant growth form caveat. Oikos 57:57–60; 1990.

    Google Scholar 

  • Franklin, J.F.; Strahler, A.H. Invertible canopy reflectance modeling of vegetation structure in semiarid woodland. IEEE Trans. Geosci. Remote Sens. 26:809–825; 1988.

    Google Scholar 

  • Gong, P.; Pu, R.; Miller, J.R. Coniferous forest leaf area index estimation along the Oregon transect using Compact Airborne Spectrographic Imager Data. Photogram. Eng. Remote Sens. 61:1107–1117; 1995.

    Google Scholar 

  • Gougeon, F.A. A crown following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images. Can. J. Remote Sens. 21(3):274–284; 1995.

    Google Scholar 

  • Gotfryd, A; Hansell, R.I. The impact of observer bias on multivariate analysis of vegetation structure. Oikos 45:223–234; 1985.

    Google Scholar 

  • Graetz, A.R.D. Remote sensing of ecosystem structure: An ecologist’s pragmatic view. In: Hobbs, E.R.J.; Mooney, H.A., eds. Remote Sensing and Biosphere Functioning. New York: Springer-Verlag; 1990:5–30.

    Google Scholar 

  • Hagberg, J.O.; Ulander, L.M.H.; Askne, J. Repeat-pass SAR interferometry over forested terrain. IEEE Trans. Geosci. Remote Sens. 33:331–340; 1995.

    Google Scholar 

  • Hall, F.G.; Shimabukuro, Y.; Huemmrich, K.F. Remote sensing of forest biophysical structure using mixture decomposition and geometric reflectance models. Ecol. Applic. 5:993–1013; 1995.

    Google Scholar 

  • Halle, F.R.; Oldeman, A.A.; Tomlinson, P.B. Tropical trees and forests. Berlin: Springer-Verlag; 1978.

    Google Scholar 

  • Hallikainen, M., Hyyppä, J.; Haapanen, J.; Taresl, J. A helicopter-borne 8 channel ranging scatterometer for remote sensing. IEEE Trans. Geosci. Remote Sens. 31:161–169; 1993.

    Google Scholar 

  • Harrell, P.A.; Kasischke, E.S.; Bourgeau-Chavez, L.L.; Haney, E.M.; et al. Evaluation of approaches to estimating aboveground biomass in southern pine forests using SIR-C data. Remote Sens. Environ. 59(2):223–233; 1997.

    Google Scholar 

  • Heilman, P.E.; Hinckley, T.M.; Roberts, D.A.; Ceulemans, R. Production physiology. In: Stettier R.F.; Bradshaw, H.W.; Heilman, P.E.; Hinckley, T.M., eds. Biology of Populus and Its Implications for Management and Conservation. Washington, D.C.: NRC Research Press; 1996:459–490.

    Google Scholar 

  • Heller, R.C.; Ulliman, J.J. Forest resources assessments. In: Colwell, R.N., ed. Manual of Remote Sensing. Falls Church, VA: American Society of Photogrammetry and Remote Sensing; 1983; Ch. 34.

    Google Scholar 

  • Henderson, F.M.; Lewis, A.J., eds. Principles and Applications of Imaging Radar. Manual of Remote Sensing, 3rd ed. Vol. 2 New York: Wiley; 1998.

    Google Scholar 

  • Hess, L.L.; Melack, J.M.; Simonett, D.S. Radar detection of flooding beneath the forest canopy: A review. Int. J. Remote Sens. 11:1313–1325; 1990.

    Google Scholar 

  • Honda, H.; Tomlinson, P.B.; Fisher, J.B. Computer simulation of branch interaction and regulation by unequal flow rates in botanical trees. Am. J. Bot. 68:569–585; 1981.

    Google Scholar 

  • Horn, H.S. The Adaptive Geometry of Trees. Princeton, NJ: Princeton Univ. Pr.; 1971.

    Google Scholar 

  • Howard, J.A. Remote Sensing of Forest Resources: Theory and Application. London: Chapman and Hall; 1991.

    Google Scholar 

  • Husch, B.; Miller, C.I.; Beers, T.W. Forest Mensuration. 3rd ed. New York: Wiley; 1982.

    Google Scholar 

  • Hutchings, N.J.; Phillips, A.H.; Dobson, R.C. An ultrasonic rangefinder for measuring the undisturbed surface height of continuously grazed grass swards. Grass Forage Sci. 45:119–128; 1990.

    Google Scholar 

  • Hyyppä, J.; Hallikainen, M. Applicability of airborne profiling radar to forest inventory. Remote Sens. Environ. 57:39–57; 1996.

    Google Scholar 

  • Imhoff, M.L. A theoretical analysis of the effect of forest structure on synthetic aperture radar backscatter and the remote sensing of biomass, IEEE Trans. Geosci. Remote Sens. 33:341–352; 1995.

    Google Scholar 

  • Ivanov, N.; Boissard, P.; Chapron, M.; Valery, P. Estimation of the height and angles of orientation of the upper leaves in the maize canopy using stereovision. Agronomie 14:183–1194; 1994.

    Google Scholar 

  • Justice, C.O.; Vermote, E.; Townshend, J.R.G.; Defries, R.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 36:1228-1249; 1998.

    Google Scholar 

  • Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The use of imaging radars for ecological applications: A review. Remote Sens. Environ. 59:141–156; 1997.

    Google Scholar 

  • Kauth, R.J.; Thomas, G.S. The tasselled cap: A graphic description of the spectral-temporal development of agricultural crops as seen by LANDSAT. In: Proceedings of the Third Symposium on Machine Processing of Remotely Sensed Data. West Lafayette, IN: LARS, Purdue Univ.; 1976:4B-41-4B-51.

    Google Scholar 

  • King, D. Airborne multispectral digital camera and video sensors: A critical review of system design and applications, Can. J. Remote Sens. 21:245–256; 1995.

    Google Scholar 

  • Koike F. Reconstruction of two-dimensional tree and forest canopy profiles using photographs. J. Appl. Ecol. 22:921–929; 1985.

    Google Scholar 

  • Koike, F.; Syahbuddin. Canopy structure of a tropical rain forest and the nature of an unstratified layer. Funct. Ecol. 7:230–235; 1993.

    Google Scholar 

  • Kruijt, B. Estimating canopy structure of an oak forest at several scales. Forestry 62:269–284; 1989.

    Google Scholar 

  • Kuuluvainen, T.; Pukkala, T. Simulation of within-tree and between-tree shading of direct radiation in a forest canopy: Effect of crown shape and sun elevation. Ecol. Model. 49:89–100; 1989.

    Google Scholar 

  • Lang, A.R.G. An instrument for measuring canopy. Remote Sens. Rev. 5:61–71; 1990.

    Google Scholar 

  • Lang, R.H.; Sidhu, J.S. Electromagnetic backscattering from a layer of vegetation: A discrete approach. IEEE Trans. Geosci. Remote Sens. GE-21:62–71; 1983.

    Google Scholar 

  • Lemmon, P.E. A spherical densiometer for estimating forest overstory density. For. Sci. 2:314–320; 1956.

    Google Scholar 

  • Li, X.W.; Strahler, A.H. Geometric-optical bidirectional reflectance modeling of a conifer forest canopy. IEEE Trans. Geosci. Remote Sens. Ge-24:906–919; 1985.

    Google Scholar 

  • Li, X.; Strahler, A.H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 30:276–292; 1992.

    Google Scholar 

  • Lowman, M.D.; Nadkarni, N.M., eds. Forest Canopies. London: Academic Press; 1995.

    Google Scholar 

  • Maguire, D.A.; Bennett, W.S. Patterns in vertical distribution of foliage in young coastal Douglas-fir. Can. J. For. Res. 26:1991–2005; 1996.

    Google Scholar 

  • Marshall, J.D.; Waring, R.H. Comparison of methods for estimating leaf-area index in old-growth Douglasfir. Ecology 67:975–979; 1986.

    Google Scholar 

  • Martens, S.N.; Ustin, S.L.; Norman, J.M. Measurement of tree canopy architecture, Int. J. Remote Sens. 12(7): 1525–1545; 1991.

    Google Scholar 

  • Martens, S.N.; Ustin, S.L.; Rousseau, R.A. Estimation of tree canopy leaf area index by gap fraction analysis. For. Ecol. Manage. 61:91–108; 1993.

    Google Scholar 

  • McAuliffe, J.R. A rapid survey method for the estimation of density and cover in desert plant communities. J. Vegetat. Sci. 1:653–656; 1990.

    Google Scholar 

  • McDonald, K.C.; Dobson, M.C.; Ulaby, FT. Using MIMICS to model L-band multiangle and multitemporal backscatter for a walnut orchard. IEEE Trans. Geosci. Remote Sens. 28:477–491; 1990.

    Google Scholar 

  • McDonald, K.C.; Ulaby, FT. Radiative transfer modelling of discontinuous tree canopies at microwave frequencies. Int. J. Remote Sens. 14:2097–2128; 1993.

    Google Scholar 

  • Means, J.E.; Acker, S.A.; Harding, D.A.; Lefsky, M.A.; Cohen, W.B.; Harmon, M.; Mckee, W.A. Use of laser altimetry to estimate forest stand characteristics in the western Cascades of Oregon. Unpublished manuscript; 1997.

    Google Scholar 

  • Means, J.E.; Hansen, H.A.; Koerper, G.J.; Alaback, P.B.; M.W.; Klopsen, M.W. Software for Computing Plant Biomass: BIOPAK User’s Guide. Gen. Tech. Rep. PNW-GTR-340. Portland, Oregon: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station; 1994.

    Google Scholar 

  • Monsi, M.; Saeki, S. Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur den Stoffproduktion. Jpn. J. Bot. 14:22–52; 1953.

    Google Scholar 

  • Mueller-Dombois, D.; Ellenberg, H. Aims and methods of vegetation ecology. New York: Wiley; 1974.

    Google Scholar 

  • Myneni, R.B.; Asrar, G.; Gerstl, S.A.W. Radiative transfer in three dimensional leaf canopies, Trans. Theory Stat. Phys. 19:205–250; 1990.

    Google Scholar 

  • Myneni, R.B.; Maggion, S.; Iaquinto, J.; Privette, J.L.; et al. Optical remote sensing of vegetation: Modeling, caveats and algorithms. 51(1):169–188; 1995.

    Google Scholar 

  • Myneni, R.B.; Nemani, R.R.; Running, S.W. Estimation of global Leaf Area Index and absorbed PAR using radiative transer models. IEEE Trans. Geosci. Remote Sens. Environ. 35:1380–1393; 1997.

    Google Scholar 

  • Nelson, R.; Swift, R.; Krabill, W. Using airborne laser to estimate forest canopy and stand characteristics. J. For. 86:31–38; 1988.

    Google Scholar 

  • Nilson, T. A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 8:25–38; 1971.

    Google Scholar 

  • Nilsson, M. Estimation of tree heights and stand volume using an airborne lidar system. Remote Sens. Environ. 56:1–7; 1996.

    Google Scholar 

  • Norman, J.M.; Campbell, G.S. Canopy structure. In: Pearcy, R.W.; Ehleringer, J.; Mooney, H.A.; Rundel, P.W., eds. Plant Physiological Ecology: Field Methods and Instrumentation. London: Chapman and Hall; 1989:301–325.

    Google Scholar 

  • Norman, J.M.; Jarvis, P.G. Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.). III. Measurements of canopy structure and interception of radiation. J. Appl. Ecol. 11:375–398; 1974.

    Google Scholar 

  • Oker-Blom, P.; Pukkala, T.; Kuuluvainen, T. Relationship between radiation interception and photosynthesis in forest canopies: Effect of stand structure and latitude. Ecol. Model. 49:73–87; 1989.

    Google Scholar 

  • Parker, G.G.; Smith, A.P.; Hogan, K.P. Access to the upper forest canopy with a large tower crane sampling the treetops in three dimensions. Bioscience 42:664–670; 1992.

    Google Scholar 

  • Pech, R.P.; Graetz, R.D.; Davis, A.W. Reflectance modelling and the derivation of vegetation indices for an Australian semi-arid shrubland. Int. J. Remote Sens. 7:389–403; 1986.

    Google Scholar 

  • Philipson, W.R., ed. Manual of Photographic Interpretation. 2nd ed. Falls Church, VA: American Society for Photogrammetry and Remote Sensing; 1997.

    Google Scholar 

  • Pierce, L.E.; Ulaby, FT.; Sarabandi, K.; Dobson, M.C. Knowledge-based classification of polarimetric SAR images. IEEE Trans. Geosci. Remote Sens. 32:1081–1086; 1994.

    Google Scholar 

  • Pitt, D.G.; Glover, G.R.; Jones, R.H. 1996. Two-phase sampling of woody and herbaceous plant communities using large scale aerial photographs. Can. J. For. Res. 26:509–524; 1996.

    Google Scholar 

  • Polatin, P.K.; Sarabandi, K.; Ulaby, FT. An iterative inversion algorithm with application to the polarimetric radar response of vegetation canopies. IEEE Trans. Geosci. Remote Sens. 30:412–415; 1994.

    Google Scholar 

  • Ranson, K.J.; Sun, G. An evaluation of AIRSAR and SIR-C/X-SAR images for mapping northern forest attributes in Maine, U.S.A. Remote Sens. Environ. 59:203–222; 1997.

    Google Scholar 

  • Reed, B.C.; Brown, J.F.; Vanderzee D.; Loveland T.R.; et al. Measuring phenological variability from satellite imagery. J. Vegetat. Sci. 5:703–714; 1994.

    Google Scholar 

  • Rich, P.M. Characterizing plant canopies with hemisherical photographs. Remote Sens. Rev. 5:13–29; 1990.

    Google Scholar 

  • Richards, J.A.; Sun, G.O.; Simonett, D.S. L-band radar backscatter modeling of forest stands. IEEE Trans. Geosci. Remote Sens. GE-25:487–498; 1987.

    Google Scholar 

  • Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogram. Eng. Remote Sens. 43:1541–1552; 1977.

    Google Scholar 

  • Roberts, D.A.; Adams, J.B.; Smith, M.O. Discriminating green vegetation, non-photosynthetic vegetation and soils in AVIRIS data. Remote Sens. Environ. 44:1–25; 1993.

    Google Scholar 

  • Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 65:267–279; 1998a.

    Google Scholar 

  • Roberts, D.A.; Brown, K.J.; Green, R.; Ustin, S.; Hinckley, T. Investigating the relationship between liquid water and leaf area in clonal Populus, Proc. 7th AVIRIS Earth Science Workshop JPL 97-21, Pasadena, CA 91109, 10 p; 1998b.

    Google Scholar 

  • Rohlf, F.J.; Archie, J.W. Least-squares mapping using interpoint distances. Ecology 59:126–132; 1978.

    Google Scholar 

  • Ross, J.P. The radiation regime and architecture of plant stands. The Hague, Netherlands: Dr. W. Junk; 1981.

    Google Scholar 

  • Running, S.W.; Coughlan, J.C. A general model of forest ecosystem processes for regional applications. Ecol. Model. 42:125–154; 1988.

    CAS  Google Scholar 

  • Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 6:1335–1372; 1985.

    Google Scholar 

  • Sinoquet, H; Rivet, P. Measurement and visualization of the architecture of an adult tree based on a three-dimensional digitising device. Tree 11(5):265–270; 1997.

    Google Scholar 

  • Sinoquet, H.; Valmorin, M.; Cabo, X.; Bonhomme, R. DAOLI: An automated laser distance system for measuring profiles of vegetation. Agric. For. Meteorol. 67:43–64; 1993.

    Google Scholar 

  • Strahler, A.H.; Woodcock, C.E.; Smith, J.A. On the nature of models in remote sensing. Remote Sens. Environ. 20:131–139; 1986.

    Google Scholar 

  • Sun, G.; Ranson, K.J. A three-dimensional radar back-scatter model of forest canopies. IEEE Trans. Geosci. Remote Sens. 33:372–382; 1995.

    Google Scholar 

  • Sun, G.; Simonett, D.S.; Strahler, A.H.; A radar back-scattering model for discontinuous coniferous forests. IEEE Trans. Geosci. Remote Sens. 29:639–650; 1991.

    Google Scholar 

  • Treuhaft, R.N.; Madsen, S.N.; Moghaddam, M.; van Zyl, J.J. Vegetation characteristics and underlying topography from interferometric radar. Radio Sci. 31:1449–1485; 1996.

    Google Scholar 

  • Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8:127–150; 1979.

    Google Scholar 

  • Ulaby, F.T.; Sarabandi, K.; McDonald, K.C.; Whitt, M.; Dobson, M.C. Michigan microwave canopy scattering model (MIMICS). Int. J. Remote Sens. 11:1223–1253; 1990.

    Google Scholar 

  • Vanderbilt, V.C.; Silva, L.F.; Bauer, M.E. Canopy architecture measured with a laser. Appl. Opt. 29:99–106; 1990.

    PubMed  CAS  Google Scholar 

  • Van Pelt, R; North, MP. Analyzing canopy structure in Pacific Northwest old-growth forests with a stand-scale crown model. Northwest Sci. 70:15–30; 1996.

    Google Scholar 

  • Wang, Y.; Davis, F.W.; Melack, J.M. Simulated and observed backscatter at P-, L-, and C-bands from ponderosa pine stands, IEEE Trans. Geosci. Remote Sens. 31:871–879; 1993.

    Google Scholar 

  • Waring, R.H.; Way, J.; Hunt, E.R. Jr.; Morrissey, L.; Ranson, K.J.; Weishampel, J.F.; Oren, R.; Franklin, S.E. Imaging radar for ecosystem studies. Bioscience 45:715–723; 1995.

    Google Scholar 

  • Way, J.; Paris, J.; Dobson, M.C.; McDonald, K.; Ulaby, F.T.; Weber, J.A.; Ustin, S.L.; Vanderbilt, V.C.; Kasischke, E.S. Diurnal change in trees as observed by optical and microwave sensors: The EOS synergism study. IEEE Trans. Geosci. Remote Sens. 29:807–821; 1991.

    Google Scholar 

  • Way, J.; Zimmermann, R.; Rignot, E.; McDonald, K.; Oren, R. Winter and spring thaw as observed with imaging radar at BOREAS. J. Geophys. Res. Atmos. 102(ND24):29673–29684; 1997.

    CAS  Google Scholar 

  • Welles, J.M. Some indirect methods of estimating canopy structure. Remote Sens. Rev. 5:31–43; 1990.

    Google Scholar 

  • Welles, J.M.; Cohen, S. Canopy structure measurement by gap fraction analysis using commercial instrumentation. J. Exp. Bot. 47:1335–1342; 1996.

    CAS  Google Scholar 

  • Weltz, M.A.; Ritchie, J.C.; Fox, H.D. Comparison of laser and field measurements of vegetation height and canopy cover. Water Resources Res. 30:1311–1319; 1994.

    Google Scholar 

  • Wimbush, D.J.; Barrow, M.D.; Costin, A.B. Color stereo-photography for the measurement of vegetation. Ecology 48:150–152; 1967.

    Google Scholar 

  • Wu, Y.; Strahler, A.H. Remote estimation of crown size, stand density, and biomass on the Oregon transect. Ecol. Applic. 4:299–312; 1994.

    Google Scholar 

  • Zebker, H.; Goldstein, R. Topographic mapping from interferometric synthetic radar observations, J. Geophys. Res. 91:4993–5001; 1986.

    Google Scholar 

  • Zeide, B. Fractal geometry in forestry applications, for. Ecol. Manage. 46(3-4): 179–188; 1991.

    Google Scholar 

  • Zeide, B. Analysis of growth equations, For. Sci. 39(3):594–616; 1993.

    Google Scholar 

  • Zoughi, R.; Wu, L.K.; Moore, R.K. Identification of the major backscattering sources in trees and shrubs at 10 GHz. Remote Sens. Environ. 19:269–290; 1986.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, F.W., Roberts, D. (2000). Stand Structure in Terrestrial Ecosystems. In: Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W. (eds) Methods in Ecosystem Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1224-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1224-9_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98743-9

  • Online ISBN: 978-1-4612-1224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics