Skip to main content

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

In this section, we discuss the role of numerical simulations in studying the response of materials and structures to large deformation or shock loading. The methods we consider here are based on solving discrete approximations to the continuum equations of mass, momentum, and energy balance. Such computational techniques have found widespread use for research and engineering applications in government, industry, and academia.

This work was performed at sandia National Laboratories and supportad by the U.S. Departmant of Energy under Contract DE-AC04-76DP00789.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.M. McGlaun and S.L. Thompson, CTH: A Three-Dimensional Shock Wave Physics Code, Internat. J. Impact Engrg. 10 (1990)

    Google Scholar 

  2. J.M. McGlaun, Personal communication

    Google Scholar 

  3. A.C. Robinson, C.T. Vaughan, H.E. Fang, C.F. Diegert, and K. Cho, Hydrocode Development on the nCUBE and the Connection Machine Hypercubes, Proceedings of the 1991 APS Topical Conference on Shock Compression of Condensed Matter, Williamsburg, VA, 1991

    Google Scholar 

  4. H.E. Fang, A. C. Ribinson, and K. Cho, Hydrocode Development on the Connection Machine, Minutes of the Fifth SIAM Conference on Parallel Processing for Scientific Computing, Houston, TX, 1991

    Google Scholar 

  5. C.T. Vaughan, Structural Analysis on Massively Parallel Computers, SAND90-1706C, Sandia National Laboratories Report, Albuquerque, NM 87185, 1991

    Google Scholar 

  6. J. Hopson, Personal communication

    Google Scholar 

  7. C.E. Anderson, An Overview of the Theory of Hydrocodes, Internat. J. Impact Engrg. 5 (1987)

    Google Scholar 

  8. W.E. Johnson and C.E. Anderson, History and Application of Hydrocodes in Hypervelocity Impact, Internat. J. Impact Engrg. 5 (1987)

    Google Scholar 

  9. C. Truesdell and R.A. Toupin, The Classical Field Theories, Encyclopedia of Physics, Volume III/l, Springer-Verlag, New York, 1960

    Google Scholar 

  10. W.F. Noh, CEL: A Time-Dependent, Two-Space-Dimensional, Coupled Eulerian-Lagrangian Code, in Methods in Computational Physics, Volume 3 (edited by B. Alder, S. Fernbach and M. Rotenberg), Academic Press, New York, 1964

    Google Scholar 

  11. J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin, Numerical Grid Generation, North-Holland, Amsterdam, 1985

    MATH  Google Scholar 

  12. M.J. Frits, Two-Dimensional Lagrangian Fluid Dynamics Using Triangular Grids, in Finite-Difference Techniques for Vectorized Fluid Dynamics Calculations (edited by D.L. Book), Springer-Verlag, New York, 1981

    Google Scholar 

  13. H.E. Trease, Three-Dimensional Free Lagrangian Hydrodynamics, in The Free-Lagrange Method (edited by M.J. Fritts, W.P. Crowley and H.E. Trease), Lecture Notes in Physics, Number 238, Springer-Verlag, New York, 1985

    Google Scholar 

  14. R.B. deBar, Fundamentals of the KRAKEN Code, UCIR-760, Lawrence Livermore Laboratory, Livermore, CA, 1974

    Google Scholar 

  15. M.J. Berger and J. Olinger, Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations, J. Comput. Phys. 53 (1984)

    Google Scholar 

  16. M.J. Berger and P. Colella, Local Adaptive Mesh Refinement for Shock Hydrodynamics, UCRL-97196, Lawrence Livermore National Laboratory, Livermore, CA, 1987

    Google Scholar 

  17. P.A. Hookham, D. Hatfield, and M. Rosenblatt, Calculation of the Interaction of Three Spherical Blast Waves Over a Planar Surface with an Adaptive-Grid TVD Code, California Research and Technology Report, Chats worth, CA, 1991

    Google Scholar 

  18. R.D. Richtmyer and K.W. Morton, Difference Methods for Initial-Value Problems, Interscience, New York, 1967

    MATH  Google Scholar 

  19. D.L. Hicks, von Neumann Stability of the Wondy Wavecode for Thermodynamic Equations of State, SAND77-0934, Sandia National Laboratories, Albuquerque, NM, 1977

    Google Scholar 

  20. J.M. McGlaun, CTH Reference Manual: Lagrangian Step for Hydrodynamic Materials, SAND90-2645, Sandia National Laboratories, Albuquerque, NM, December 1990

    Google Scholar 

  21. S.L. Thompson, CSQII—An Eulerian Finite Difference Program for Two-Dimensional Material Response—Part 1, Material Sections, SAND77-1339, Sandia National Laboratories, Albuquerque, NM, January 1979

    Google Scholar 

  22. A.R. Mitchell and R. Wait, The Finite Element Method in Partial Differential Equations, Wiley, New York, 1977

    MATH  Google Scholar 

  23. D.E. Burton, Exact Conservation of Energy and Momentum in Staggered-Grid Hydrodynamics with Arbitrary Connectivity, UCRL-JC-104258, Lawrence Livermore National Laboratory, Livermore, CA, 1990

    Google Scholar 

  24. W. Herrmann and L.D. Bertholf, Explicit Lagrangian Finite-Difference Methods, in Computational Methods for Transient Analysis (edited by J.D. Achenbach), North-Holland, Amsterdam, 1983

    Google Scholar 

  25. D.E. Burton, Conservation of Energy, Momentum, and Angular Momentum in Lagrangian Staggered-Grid Hydrodynamics, UCRL-JC-105926, Lawrence Livermore National Laboratory, Livermore, CA, 1990

    Google Scholar 

  26. W.D. Schultz, A Tensor Artificial Viscosity for Numerical Hydrodynamics, J. Math. Phys. 5, Na. 1 (1964)

    Google Scholar 

  27. L.G. Margolin, A Centered Artificial Viscosity for Cells with Large Aspect Ratio, UCRL-53882, Lawrence Livermore National Laboratory, Livermore, CA, 1988

    Google Scholar 

  28. W.F. Noh, Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux, J. Comput. Phys. 72 (1978)

    Google Scholar 

  29. 29. P.R. Woodward, PPM: Piecewise-Parabolic Methods for Astrophysical Fluid Dynamics, in Astrophysical Radiation Hydrodynamics (edited by K.A. Winkler and M.L. Norman), D. Reidel, Dordrecht, 1982

    Google Scholar 

  30. J.B. Bell, P. Colella, and J.A. Trangenstein, Higher Order Godunov Methods for General Systems of Hyperbolic Conservation Laws, J. Comput. Phys. 82 (1989)

    Google Scholar 

  31. J.K. Dukowicz, A General, Non-Iterative Riemann Solver for Godunov’s Method, J. Comput. Phys. 61 (1985)

    Google Scholar 

  32. P. Colella and H.M. Glaz, Efficient Solution Algorithms for the Riemann Problem for Real Gasses, J. Comput. Phys. 59 (1985)

    Google Scholar 

  33. L.M. Taylor and D.P. Flanagan, PRONTO 2D: A Two-Dimensional Transient Solid Dynamics Program, SAND86-0594, Sandia National Laboratories, Albuquerque, NM, 87185, 1987

    Book  Google Scholar 

  34. S.A. Silling, Stability and Accuracy of Differencing Schemes for Viscoplastic Models in Wavecodes, SAND91-0141, Sandia National Laboratories, Albuquerque, NM, 1991

    Google Scholar 

  35. S.L. Thompson Private communication

    Google Scholar 

  36. B. Engquist and A. Majda, Absorbing Boundary Conditions for the Numerical Simulation of Waves, Math. Comput. 31, No. 139 (1977)

    Google Scholar 

  37. D. Givoli, Non-reflecting Boundary Conditions, J. Comput. Phys. 94, No. 1, (1991)

    Google Scholar 

  38. J.M. McGlaun, Improvements in CSQII: A Transmitting Boundary Condition, SAND82-1248, Sandia National Laboratories, Albuquerque, NM, 87185, 1982

    Google Scholar 

  39. M. Cohen and P.C. Jenning, Silent Boundary Methods for Transient Analysis, Computational Methods for Transient Analysis (edited by J.D. Achenbach), North-Holland, Amsterdam, 1983

    Google Scholar 

  40. R. Vichnevetsky and J.B. Bowles, Fourier Analysis of Numerical Approximations of Hyperbolic Equations, SIAM Studies in Applied Mathematics, 1982

    Google Scholar 

  41. B. van Leer, Towards the Ultimate Conservative Difference Scheme. V.A. Second-Order Sequel to Godunov’s Method, J. Comput. Phys. 32 (1979)

    Google Scholar 

  42. S.T. Zalesak, Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids, J. Comput. Phys. 31 (1979)

    Google Scholar 

  43. G. Luttwak and R.L. Rabie, The Multimaterial Arbitrary Lagrangian–Eulerian Code MMALE and its Application to Some Problems of Penetration and Impact, LA-UR-2311, Los Alamos National Laboratory, Los Alamos, NM, 1985

    Google Scholar 

  44. J.M. McGlaun, CTH Reference Manual: Cell Thermodynamics, SAND91-0002, Sandia National Laboratories, Albuquerque, NM, 1991

    Google Scholar 

  45. C.W. Hirt and B.D. Nichols, Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys. 39 (1981)

    Google Scholar 

  46. J.M. Hyman, Numerical Methods for Tracking Interfaces, Physica 12D (1984)

    Google Scholar 

  47. I.L. Chern and P. Colella, A Conservative Front Tracking Method for Hyperbolic Conservation Laws, UCRL-97200, Lawrence Livermore National Laboratory, Livermore, CA, 1987

    Google Scholar 

  48. N. Ashgriz and J.Y. Poo, FLAIR: Flux Line-Segment Model for Advection and Interface Reconstruction, J. Comput. Phys. 93 (1991)

    Google Scholar 

  49. W.F. Noh and P.R. Woodward, SLIC (Simple Line Interface Calculation), Lecture Notes in Physics, No. 59, Springer-Verlag, New York, 1977

    Google Scholar 

  50. P. Colella, Multidimensional Upwind Methods for Hyperbolic Conservation Laws, LBL-17023, Lawrence Berkley Laboratory, Berkley, CA, 1984

    Google Scholar 

  51. J. Saltzman and P. Colella, Second-Order Corner Coupled Upwind Transport Methods for Lagrangian Hydrodynamics, LA-UR-85-678, Los Alamos National Laboratory, Los Alamos, NM, 1987

    Google Scholar 

  52. J.B. Bell, C.N. Dawson, and G.R. Shubin, An Unsplit, Higher-Order Godunov Method for Scalar Conservation Laws in Multiple Dimensions, J. Comput. Phys. 74 No. 1 (1988)

    Google Scholar 

  53. J.M. McGlaun, Improvements on CSQII: An Improved Numerical Convection Algorithm, SAND82-0051, Sandia National Laboratories, Albuquerque, NM, 1982

    Google Scholar 

  54. R.J. LeVeque and J.B. Goodman, TVD Schemes in One and Two Space Dimensions, Lectures in Applied Mathematics, Vol. 22, 1985

    Google Scholar 

  55. P.K. Sweby, High Resolution TVD Schemes Using Flux Limiters, Lectures in Applied Mathematics, Vol. 22, 1985

    Google Scholar 

  56. A. Harten, ENO Schemes with Subcell Resolution, J. Comput. Phys. 83 (1989)

    Google Scholar 

  57. D.J. Benson, An Efficient, Accurate, Simple ALE Method for Nonlinear Finite Element Programs, Comput. Methods Appl. Mech. 79 (1989)

    Google Scholar 

  58. D.F. Hawken, JJ. Gottlieb, and J.S. Hansen, Review of Some Adaptive Node-Movement Techniques in Finite-Element and Finite-Difference Solutions of Partial Differential Equations, J. Comput. Phys. 95 (1991)

    Google Scholar 

  59. J. Donea, Arbitrary Lagrangian–Eulerian Finite Element Methods, Computational Methods for Transient Analysis (edited by J.D. Achenbach), North-Holland, Amsterdam, 1983

    Google Scholar 

  60. M.E. Kipp and R.J. Lawrence, WONDY V—A One-Dimensional Finite-Difference Wave Propagation Code, SAND81-0930, Sandia National Laboratories, Albuquerque, NM, 1982

    Book  Google Scholar 

  61. 61. M.E. Kipp and D.E. Grady, Shock Compression and Release in High-Strength Ceramics, SAND89-1461, Sandia National Laboratories, Albuquerque, NM, 1989

    Google Scholar 

  62. M.L. Wilkins, Mechanics of Penetration and Perforation, Internat. J. Engrg. Sci., 16, 793–807 (1978)

    Article  Google Scholar 

  63. M.L. Wilkins, Lawrence Livermore National Laboratory Report, UCRL-7322, Rev. 1, 1969

    Google Scholar 

  64. J.W. Swegle, TOODY IV—A Computer Program for Two-Dimensional Wave Propagation, SAND78-0552, Sandia National Laboratories, Albuquerque, NM, 1978

    Google Scholar 

  65. 65. L.D. Bertholf et al., Kinetic Energy Projectile Impact on Multi-Layered Targets: Two-Dimensional Stress Wave Calculations, Prepared by Sandia National Laboratories, Contract Report ARBRL-CR-00391, Ballistic Research Laboratory, 1979

    Google Scholar 

  66. G.R. Johnson, R.A. Stryk, and M.E. Nixon, Two-and Three-Dimensional Computational Approaches for Steel Projectiles Impacting Concrete Targets, Proc. Post-SMIRT Seminar on Impact, Lausanne, Switzerland, 1987

    Google Scholar 

  67. L.N. Kmetyk and P. Yarrington, Cavity Dimensions for High Velocity Penetration Events— A Comparison of Calculational Results with Data, SAND88-2693, Sandia National Laboratories, Albuquerque, NM, 1989

    Google Scholar 

  68. C.K. Hwee and A.C.J. Ong, Simulation of Penetration into Armor Using VEC/ DYNA3D, Engrg. Technol. 1, No. 3 (1991)

    Google Scholar 

  69. M.E. Kipp, Private communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

McGlaun, J.M., Yarrington, P. (1993). Large Deformation Wave Codes. In: Asay, J.R., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0911-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0911-9_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6943-4

  • Online ISBN: 978-1-4612-0911-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics