Skip to main content

Biomaterials for Total Joint Replacements

  • Chapter
Biomechanics and Biomaterials in Orthopedics

Abstract

The European Society for Biomaterials defines a biomaterial as “a material that interacts with the biological systems to evaluate, treat, reinforce, or replace a tissue, organ, or function of the organism” and the biocompatibility as “the ability of a material to perform with an appropriate host response in a specific application” [1]. Biocompatibility of a biomaterial is tested by in vitro screening, in vivo testing, and clinical monitoring; each step evaluates the biological response in different conditions. In vivo, a few seconds after the implantation, the biomaterial is rapidly adsorbed by proteins, whose quantity and organization depend on the characteristics of the biomaterial, such as chemical composition of the bulk and surface, surface geometry, chemical and physical properties, and the properties of the proteins [2]. The host cells contact the protein layer [3]; in total joint replacements, bone cells growing on the prosthetic surface determine an “osseointegration” [4], fibrous cells a “fibrous fixation”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  • Brach del Prever EM, Costa L, Baricco M, Piconi C, Masse A. Biomaterials for joint prosthesis. In: EFORT (European Federation of National Associations of Orthpaedics and Traumatology), editor. Surgical Techniques in Orthpaedics and Traumatology. Paris: Elsevier, 2003.

    Google Scholar 

  • Cales B. Fractures des têtes de prothèses de hanche en zircone. Maitr Orthop 2000;96:26–30.

    Google Scholar 

  • Li S, Burstein AH. Current concepts review: UHMPWE: the material and its use in total joint implants. J Bone Joint Surg (A) 1994;76-A:1080–9.

    Google Scholar 

References

  1. Williams DF. Definition in biomaterials. Proceedings of the Consensus Conference of the European Society for Biomaterials, Chester, England, March 3–5, 1986. Amsterdam: Elsevier, 1987;49–59.

    Google Scholar 

  2. Nizard R, Bizot P, Kerboull L, Sedei L. Biomatériaux orthopédiques. Encycl Méd Chir (Elsevier, Paris), Techniques chirurgicales — Orthopédie-Traumatologie, 1996;44–003,20.

    Google Scholar 

  3. Horbett TA, Ratner BD, Schakenraad JM, Schoen FJ. Some background concepts. In: Biomaterial Science. San Diego: Academic Press, 1996:133.

    Chapter  Google Scholar 

  4. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O et al. Osseointegrated implants in the treatment of the edentulous jaw. Scand Plast Reconstr Surg 1977; 16.

    Google Scholar 

  5. Jacobs JJ, Rorebuck KA, Archibeck M, Hallab NJ, Giant TT. Osteolysis: basic science. Clin Orthop Rel Res 2001;393:71–7.

    Article  Google Scholar 

  6. Visuri T, Pukkala E, Paavolainen P, Pulkkinen P, Riska EB. Cancer risk after metal on metal and polyethylene on metal total hip arthroplasty. Clin Orthop Rel Res 1996;329S:280–9.

    Google Scholar 

  7. Gillespie WJ, Frampton CMA, Henderson RJ, Ryan PM. The incidence of cancer following total hip replacement. J Bone Joint Surg [Br] 1988;70-B:539–42.

    Google Scholar 

  8. Nyrén O, McLaughlin JK, Gridley G, Ekbom A, Johnell 0, Fraumeni JF Jr et al. Cancer risk after hip replacement with metal implants: a population-based cohort study in Sweden. J Natl Cancer Inst 1995;87(1): 28–33.

    Article  PubMed  Google Scholar 

  9. Doherty AT, Howell RT, Bisbinas I, Learmonth ID, Newson R, Case CP. Increased chromosome translocations and aneuploidy in peripherial blood lymphocytes of patients having revision arthroplasty of the hip. J Bone Joint Surg [Br] 2001;83B(7):1075–81.

    Article  Google Scholar 

  10. Baldini N, Cenni E, Granchi D, Ciapetti G, Savarino L, Tigani D, et al. Metal and cement hypersensitivity in patients with arthroplasties. Poster Nè 1078. 48th Annual Meeting of the Orthopaedic Research Society, Dallas, 2002.

    Google Scholar 

  11. ASTM designation F 648–98 standard specification for UHMWPE powder and fabricated form for surgical implants.

    Google Scholar 

  12. Costa L, Jacobson K, Bracco P, Brach del Prever EM. Oxidation on ethylene oxide-sterilized UHMWPE. Biomaterials 2002;23:1613–24.

    Article  PubMed  CAS  Google Scholar 

  13. Costa L, Bracco P, Brach del Prever EM, Luda MP. Oxidation in prosthetic UHMWPE. 224th ACS National Meeting, Boston, MA, August 18–22, 2002.

    Google Scholar 

  14. Costa L. Brach del Prever EM. UHMWPE for arthroplasty. Torino: Minerva Medica, 2000.

    Google Scholar 

  15. Blunn G, Brach del Prever EM, Costa L, Fisher J, Freeman MAR. Ultra-high-molecular-weight polyethylene (UHMWPE) in total knee replacement: fabrication, sterilization and wear. J Bone Joint Surg Br 2002;84:946–9.

    Article  PubMed  CAS  Google Scholar 

  16. McKellop H, Shen FW, Lu B, Campbell P, Salovey R. Development of an extremely wear-resistant UHMWPE for total hip replacements. J Orthop Res 1999; 17:157–67.

    Article  PubMed  CAS  Google Scholar 

  17. Kurtz SM, Muratoglu OK, Evans M, Edidin AA. Advances in the processing, sterilization and crosslinking of the ultra-high-molecular-weight polyethylene for total joint arthroplasty. Biomaterials 1999;20:1659–88.

    Article  PubMed  CAS  Google Scholar 

  18. Costa L, Bracco P, Brach del Prever E, Luda MP, Trossarelli L. Analysis of products in vivo diffused in UHMWPE prosthesis components. Biomaterials 2001; 22(4):307–15.

    Article  PubMed  CAS  Google Scholar 

  19. Jasty M. Fixation by PMMA. In: Callaghan JJ, Rosenberg AG, Rubash HE, editors. The Adult Hip. Philiadelphia: Lippincott-Raven, 1998; 187–200.

    Google Scholar 

  20. Wixon RL, Lautenschlager EP. Methyl methacrylate. In: Callaghan JJ, Rosenberg AG, Rubash HE, editors. The Adult Hip. Philiadelphia: Lippincott-Raven, 1998; 187–200.

    Google Scholar 

  21. Trippel SB. Antibiotic-impregnated cement in total joint arthroplasty. J Bone Joint Surg (A) 1986;68A: 1297–302.

    Google Scholar 

  22. Boutin P, Christel P, Dorlot JM et al. The use of dense alumina-alumina ceramic combination in total hip replacement. J Biomed Mater Res 1988;22:1203–32.

    Article  PubMed  CAS  Google Scholar 

  23. Sedel L. Evolution of alumina-on-alumina implants: a review. Clin Orthop 2000;379:113–22.

    Article  PubMed  Google Scholar 

  24. Rieger W. Ceramics in orthopaedics — 30 years of evolution and experience. In: Rieker C, Oberholtzer S, Wyss U, editors. World Tribology Forum in Arthroplasty. Bern, CH: Hans Huber, 2001:309–18.

    Google Scholar 

  25. Heimke G, Leyen S, Willmann G. Knee arthroplasty: recently developed ceramics offer new solutions. Bio-materials 2002;23:1539–51.

    CAS  Google Scholar 

  26. Piconi C, Maccauro G. Zirconia as a ceramic bio-material. Biomaterials 1999;20:1–25.

    Article  PubMed  CAS  Google Scholar 

  27. Geesink RGT. Osteoconductive coatings for total joint arthroplasty. Clin Orthop 2002;395:53–65.

    Article  PubMed  Google Scholar 

  28. Sun L, Berndt C, Gross KA, Kukuc A. Material fundamentals and clinical performances of Plasma spray coatings: a review. J Biomed Mater Res (Appl Biomater) 2001;58:570–92.

    Article  CAS  Google Scholar 

  29. Helsen JA, Brème HJ, editors. Metals as Biomaterials. Chichester, UK: John Wiley & Sons, 1998.

    Google Scholar 

  30. Brunski JB. Metals. In: Biomaterials Science. Academic Press, 1996;37.

    Google Scholar 

  31. Gilbert JL. Metals. In: Callaghan JJ, Rosenberg AG, Rubash HE, editors. The Adult Hip. Philiadelphia: Lippincott-Raven, 1998; 134.

    Google Scholar 

  32. Chu PK, Chen YJ, Wang LP, Huang N. Plasma-surface modification of biomaterials. Mater Sci Eng 2002;R36: 143–206.

    CAS  Google Scholar 

  33. Bolton J, Hu X. In vitro corrosion testing of PVD coatings applied to a surgical grade Co-Cr-Mo alloy. J Mater Sci Mater in Med 2002;13:567–74.

    Article  CAS  Google Scholar 

  34. Teoh SH. Fatigue of biomaterials: a review. Int J Fatigue 2000;22:825–37.

    Article  CAS  Google Scholar 

  35. Ashby MF. Materials Selection in Mechanical Design. Oxford, UK: Butterworth-Heinmann, 1999.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

del Prever, E.M.B., Costa, L., Baricco, M., Piconi, C., Massé, A. (2004). Biomaterials for Total Joint Replacements. In: Poitout, D.G. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-4471-3774-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3774-0_52

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3776-4

  • Online ISBN: 978-1-4471-3774-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics