Skip to main content

Abstract

Ligaments are passive collagenous structures that act primarily as tensile restraints to control the distance between their attachment points. Ligaments normally traverse joints, and so they act to control the relative separation of the bones that they are attached to. Hence, the ligaments control the patterns of movement, or kinematics, of joints, as well as ensuring the stability of joints. In addition to this simple mechanical description of the role of ligaments, they provide more subtle control of joint motion and stability via proprioceptive feedback to the muscles, but this will not be addressed here. This chapter will review the mechanical properties of the ligaments themselves, and then look at how the ligaments act to stabilize joints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amiel D, Billings E, Akeson WH. Ligament structure, chemistry, and physiology. In: Daniel D, Akeson W, O’Connor J editors: Knee Ligaments: Structure, Function, Injury, and Repair. New York: Raven Press, 1990,77–91.

    Google Scholar 

  2. Harner CD, Livesay GA, Kashiwaguchi S et al. Comparative study of the size and shape of human anterior and posterior cruciate ligaments. J Orthop Res 1995;13: 429–34.

    Article  PubMed  CAS  Google Scholar 

  3. Race A, Amis AA. The mechanical properties of the two bundles of the human posterior cruciate ligament. Biomech 1994;27:13–24.

    Article  CAS  Google Scholar 

  4. Pring DJ, Amis AA, Coombs RRH. The mechanical properties of digital flexor tendons related to artificial tendons. J Hand Surg 1985;10:331–6.

    CAS  Google Scholar 

  5. Woo SLY, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex: The effects of specimen age and orientation. Am J Sports Med 1991;19:217–25.

    Article  PubMed  CAS  Google Scholar 

  6. Noyes FR, Grood ES. The strength of the anterior cruciate ligament in humans and rhesus monkeys, age and species-related changes. J Bone Joint Surg Am 1976;56: 1074–82.

    Google Scholar 

  7. Kennedy JC, Hawkins RJ, Willis RB, Danylchuk KD. Tension studies in human knee ligaments, yield point, ultimate failure, and disruption of the cruciate and tibial collateral ligaments. J Bone Joint Surg Am 1976;58: 350–5.

    PubMed  CAS  Google Scholar 

  8. Butler DL, Kay MD, Stouffer MD. Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J Biomech 1986; 19:425–32.

    Article  PubMed  CAS  Google Scholar 

  9. Race A, Amis AA. Cross-sectional area measurement of soft tissue. A new casting method. J Biomech 1996;29: 1207–12.

    Article  PubMed  CAS  Google Scholar 

  10. Lee TQ, Woo SLY. A new method for determining cross-sectional shape and area of soft tissues. J Biomed Eng 1988;110:110–14.

    CAS  Google Scholar 

  11. Viidik A. Simultaneous mechanical and light microscopic studies of collagen fibers. Z Anat Entwicklungs-gesch 1972;136:204–12.

    Article  CAS  Google Scholar 

  12. Cabaud HE. Biomechanics of the anterior cruciate ligament. Clin Orthop 1983;182:26–31.

    Google Scholar 

  13. Noyes FR, DeLucas JL, Torvik PJ. Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. J Bone Joint Surg Am 1974;56:236–53.

    PubMed  CAS  Google Scholar 

  14. Prietto MP, Bain JR, Stonebrook SN, Settlage R. Tensile strength of the human posterior cruciate ligament. Trans 34th Ann Orthop Res Soc 1988;13:195.

    Google Scholar 

  15. Amis AA, Dawkins GPC. Functional anatomy of the anterior cruciate ligament: fiber bundle actions related to ligament replacements and injuries. J Bone Joint Surg Br 1991;73:260–7.

    PubMed  CAS  Google Scholar 

  16. Amis AA, Scammell BE. Biomechanics of intrarticular and extraarticular reconstructions of the anterior cruciate ligament. J Bone Joint Surg Am 1993;75:812–17.

    CAS  Google Scholar 

  17. Race A, Amis AA. PCL reconstruction: in vitro biome-chanical comparison of ‘isometric’ versus single and double-bundled ‘anatomic’ grafts. J Bone Jt Surg Br 1998;80:173–9.

    Article  CAS  Google Scholar 

  18. Beynnon BD, Amis AA. In vitro testing protocols for the cruciate ligaments and ligament reconstructions. Knee Surg, Sports Traumatol, Arthroscopy 1986;Suppl 1: S70–6.

    Google Scholar 

  19. Figgie HE, Bahnuik EH, Heiple KG, Davy DT. The effects of tibial-femoral angle on the failue mechanics of the canine anterior cruciate ligament. Trans 28th Ann Orthop Res Soc 1982;7:309.

    Google Scholar 

  20. Amis AA. Biomechanics of ligaments. In: Jenkins DHR, editor. Ligament Injuries and their Treatment. London: Chapman and Hall, 1985;3–28.

    Google Scholar 

  21. Tkaczuk H. Tensile properties of human lumbar longitudinal ligaments. Acta Orthop Scand 1968;Suppl 115.

    Google Scholar 

  22. Weaver JK, Chalmers J. Cancellous bone: its strength and changes with ageing and an evaluation of some methods for measuring its mineral content. Part 1: Age changes in cancellous bone. Part 2: Osteoporosis. J Bone Jt Surg Am 1966;48:289–308.

    CAS  Google Scholar 

  23. Smith JW. The elastic properties of the anterior cruciate ligament of the rabbit. J Anat 1954;88:369–81.

    PubMed  CAS  Google Scholar 

  24. Thornton GM, Leask GP, Shrive NG, Frank CB. Early medial collateral ligament scars have inferior creep behavior. J Orthop Res 2000;18:238–46.

    Article  PubMed  CAS  Google Scholar 

  25. Viidik A. Biomechanics and functional adaptation of tendons and joint ligaments. In: Evans FG, editor. Studies on the Anatomy and Function of Bone and Joints. Berlin: Springer, 1966; 17–39.

    Chapter  Google Scholar 

  26. Woo SLY, Gomez MA, Akeson WH. The time and history-dependent viscoelastic properties of the canine medial collateral ligament. J Biomech Eng 1981; 103: 293–8.

    Article  PubMed  CAS  Google Scholar 

  27. Pioletti DP, Rakotamanana LR, Leyvras PR Strain rate effect on the mechanical behavior of the anterior cruciate ligament-bone complex. Med Eng Phys 1999; 21:95–100.

    Article  PubMed  CAS  Google Scholar 

  28. Cabaud HE, Chatty A, Gildengorin V, Feltman RJ. Exercise effects on the strength of the rat anterior cruciate ligament. Am J Sports Med 1980;8:79–86.

    Article  PubMed  CAS  Google Scholar 

  29. Wright TM, Hayes WC. Tensile testing of bone over a wide range of strain rates: effects of strain rate, microstructure and density. Med Biol Eng 1976; 14: 671–9.

    Article  PubMed  CAS  Google Scholar 

  30. LaBan MM. Collagen tissue: implications of its response to stress in vitro. Arch Phys Med Rehab 1962;43:461–6.

    CAS  Google Scholar 

  31. Pope MH, Crowninshield R, Miller R, Johnson R. The static and dynamic behavior of the human knee in vivo. J Biomech 1976;9:449–52.

    Article  PubMed  CAS  Google Scholar 

  32. Amis AA. Biomechanics of bone, tendon and ligament. In: Hughes SPF, McCarthy I, editors. Sciences Basic to Orthopaedics. London: WB Saunders, 1997;222–39.

    Google Scholar 

  33. Chimich D, Frank CB, Shrive NG, Marchuk L, Bray R. Water content alters viscoelastic behavior of the normal adolescent rabbit medial collateral ligament. J Biomech 1992;25:831–7.

    Article  PubMed  CAS  Google Scholar 

  34. Laros GS, Tipton CM, Cooper RR. Influence of physical activity on ligament insertions in the knees of dogs. J Bone Jt Surg Am 1971;53:275–86.

    CAS  Google Scholar 

  35. Noyes FR, Torvik PJ, Hyde WB, DeLucas JL. Biomechanics of ligament failure II. An analysis of immobilization, exercise, and reconditioning effects in primates. J Bone Joint Surg Am 1974;56:1406–18.

    PubMed  CAS  Google Scholar 

  36. Daniel DM, Malcolm LL, Losse G, Stone ML. Instrumented measurement of anterior laxity in the knee. J Bone Joint Surg Am 1985;67:720–6.

    PubMed  CAS  Google Scholar 

  37. Gurtler RA, Stein R, Torg JS. Lachman test evaluated: quantification of a clinical observation. Clin Orthop 1987;216:141–50.

    PubMed  Google Scholar 

  38. Noyes FR, Grood ES, Butler DL, Paulos LE. Clinical biomechanics of the knee: ligament restraints and functional stability. In: AAOS symposium on the Athlete’s Knee. St Louis: CV Mosby, 1980; 1–35.

    Google Scholar 

  39. Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee: a bio-mechanical study. J Bone Joint Surg Am 1980;62:259–70.

    PubMed  CAS  Google Scholar 

  40. Amis AA. The kinematics of knee stability. In: Jakob RP, Fulford P, Horan E, editors. European instructional course lectures vol 4. J Bone Joint Surg, London, 1999; 96–104.

    Google Scholar 

  41. Grood ES, Noyes FR, Butler DL, Suntay WJ. Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knees. J Bone Joint Surg Am 1981;63:1257–69.

    PubMed  CAS  Google Scholar 

  42. Amis AA, Zavras TD. Isometricity and graft placement during anterior cruciate ligament reconstruction. The Knee 1995;2:5–17.

    Article  Google Scholar 

  43. Abrahams M. Mechanical behavior of tendon in vitro. Med Biol Eng 1967;5:433–4.

    Article  PubMed  CAS  Google Scholar 

  44. O’Meara PM, O’Brien WR, Henning CE. Anterior cruciate ligament reconstruction stability with continuous passive motion. Clin Orthop 277:201–9.

    Google Scholar 

  45. Friederich NF, Muller W How important is isometric placement of cruciate ligament grafts? Intraoperative measurement versus mid-term clinical follow-up. J Bone Joint Surg Orthop Proc Br 1993;75(Suppl II): 150–1.

    Google Scholar 

  46. Sapega AA, Moyer RA, Schneck C, Komalahiranya N. Testing for isometry during reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 1990;72:259–67.

    PubMed  CAS  Google Scholar 

  47. Butler DL, Guan Y, Kay M, Cummings J, Feder S, Levy M. Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 1992; 25:511–18.

    Article  PubMed  CAS  Google Scholar 

  48. Mommersteeg TJA, Blankevoort L, Kooloos JGM, Hendriks JCM, Kauer JMG, Huiskes R. Nonuniform distribution of collagen density in human knee ligaments. J Orthop Res 1994;12:238–45.

    Article  PubMed  CAS  Google Scholar 

  49. Sidles JA, Larson RV, Garbini JL, Downey DJ, Matsen FA. Ligament length relationships in the moving knee. J Orthop Res 1988;6:593–610.

    Article  PubMed  CAS  Google Scholar 

  50. Hefzy MS, Grood ES, Noyes FR. Factors affecting the region of most isometric femoral attachments. Part II: the anterior cruciate ligament. Am J Sports Med 1989; 17:208–16.

    Article  PubMed  CAS  Google Scholar 

  51. Friederich NF, O’Brien WR. Functional anatomy of the cruciate ligaments. In: Jakob RP, Staubli HU, editors. The knee and the Cruciate Ligaments. Berlin: Springer-Verlag, 1992;78–91.

    Chapter  Google Scholar 

  52. Amis AA, Beynnon B, Blankevoort L, Chambat P, Christel P, Durselen L et al. Proceedings of the ESSKA scientific workshop on reconstruction of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrose 1994;2:124–32.

    Article  CAS  Google Scholar 

  53. Bradley J, FitzPatrick D, Daniel D, Shercliff T, O’Connor J. Orientation of the cruciate ligament in the sagittal plane: a method of predicting its length change with flexion. J Bone Joint Surg Br 1988;70:94–9.

    PubMed  CAS  Google Scholar 

  54. Race A, Amis AA. Loading of the two bundles of the posterior cruciate ligament: an analysis of bundle function in A-P drawer. J Biomech 1966;29:873–9.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Amis, A.A. (2004). The Biomechanics of Ligaments. In: Poitout, D.G. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-4471-3774-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3774-0_48

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3776-4

  • Online ISBN: 978-1-4471-3774-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics