Skip to main content

Microscopic Simulation of Evacuation Processes on Passenger Ships

  • Conference paper
Theory and Practical Issues on Cellular Automata

Abstract

The analysis of evacuation processes on-board passenger ships has attracted increasing interest over the last years. Most of the approaches utilise so called flow models. Cellular automaton models, widely used for traffic simulations, on the other hand provide a more natural approach towards pedestrian dynamics. Two major difficulties are intrinsical to the problem: two-dimensional movement of pedestrians and the complexity of psychological and social influences. In this paper a simple CA-model for the description of crowd motion is presented and its implementation in a simulation software outlined. The validity of the assumptions and the scope of the applications will have to be scrutinised by comparison with empirical data from actual evacuations or drills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. IMO, editor. Safety of Life at Sea (SOLAS), chapter II-2/28–1.3. IMO, London, 1974.http://www.imo.org

  2. IMO. Interim guidelines for a simplified evacuation analysis on ro-ro passengers ships. MSC/Circ.909, 1999.www.imo.org/imo/circs/msc/71/list.htm

  3. L.C. Boer, W. Bles. Evacuation from ships: Account for ship motion. In Safety of transportation: Imbalance between growth and safety, Delft, 1998.

    Google Scholar 

  4. L.C. Boer, A. Vredeveldt. Way-finding behaviour and technical guidance systems. In 21th Century Cruise Ship, London, 1999. Royal Inst, of Naval Architecture.

    Google Scholar 

  5. D. Helbing. Verkehrsdynamik. Springer, Berlin, 1997.

    MATH  Google Scholar 

  6. H.W. Hamacher, S.A. Tjandra. Modelling emergency evacuation—an overview, to be published, 2000.

    Google Scholar 

  7. L.F. Henderson. On the fluid mechanics of human crowd motion. Transpn. Res., 8:509–515, 1974.

    Article  Google Scholar 

  8. D. Helbing. A fluid-dynamic model for the movement of pedestrians. Complex Systems, 6:391–415, 1992.

    MathSciNet  MATH  Google Scholar 

  9. S.P. Hoogendoorn, P.H.L. Bovy. Pedestrian speed density functions using gas-kinetic modelling. In Piet H.L.B, R. Thijs, editors, Estimators of travel time for road networks, pages 107–130. Delft University Press, 2000.

    Google Scholar 

  10. L.F. Henderson. The statistics of crowd fluids. Nature, 229, 1971

    Google Scholar 

  11. L.F. Henderson. Sexual differences in human crowd motion. Nature, 240:353–355, 1972.

    Article  Google Scholar 

  12. P.G. Gipps, B. Marksjö. A micro-simulation model for pedestrian flows. Mathematics and Computers in Simulation, 27:95–105, 1985.

    Article  Google Scholar 

  13. M. Muramatsu, T. Irie, T. Nagatani. Jamming transition in pedestrian counter flow. Physica A, 267:487–498, 1999.

    Article  Google Scholar 

  14. M. Fukui, Y. Ishibashi. Self-organized phase transitions in CA-models for pedestrians. J. Phys. Soc. Japan, 8, 1999.

    Google Scholar 

  15. M. Ebihara, A. Ohtsuki, H. Iwaki. A model for simulating human behavior during emergency evacuation based on classificatory reasoning and certainty value handling. Microcomputers in Civil Engineering, 7:63–71, 1992.

    Google Scholar 

  16. V.J. Blue, J.L. Adler. Bi-directional emergent fundamental pedestrian flows from cellular automata microsimulation. In A. Ceder, editor, Int. Symp. on Transportation and Traffic Theory. Pergamon, 1999.

    Google Scholar 

  17. K. Nagel, M. Schreckenberg. A cellular automaton model for freeway traffic. J. de Phys. I, 2:221, 1992.

    Google Scholar 

  18. M. Schreckenberg, D.E. Wolf (eds.). Traffic and Granular Flow ’97. Springer, Singapore, 1998.

    Google Scholar 

  19. D. Helbing, H.-J. Hermann, M. Schreckenberg, D.E. Wolf, editors. Traffic and Granular Flow ’99. Springer, Berlin, 2000.

    MATH  Google Scholar 

  20. D.E. Wolf. Cellular automata for traffic simulations. Physica A, 263:438–451, 1999.

    Article  MathSciNet  Google Scholar 

  21. T. Meyer-König, H. Klüpfel, J. Wahle, M. Schreckenberg. BYPASS: Evakuierungssimulation für Fahrgastschiffe. OR News, 7:5–8, 1999.

    Google Scholar 

  22. G. Proulx. Evacuation time and movement in apartment buildings. Fire Safety Journal, 24:229–246, 1995.

    Article  Google Scholar 

  23. G.G. Løvås. On the importance of building evacuation system components. IEEE Transact, on Eng. Man., 45:181–191, 1998.

    Article  Google Scholar 

  24. H.W. Hamacher, S. Tufekci. On the Use of Lexicographic Min Cost Flows in Evacuation Modelling. Naval Res. Log., 34:487–503, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  25. E.R. Galea, M. Owen, P.J. Lawrence. Computer modelling of human behaviour in aircraft fire accidents. Toxicology, 115:63–78, 1996.

    Article  Google Scholar 

  26. MEPdesign. Mustering and evacuation of passengers: Scientific basis for design. BRITE-EURAM III http://dbs.cordis.lu, 1997

  27. MASIS II. Human Element in Man/Machine Interface to Improve Saftey and Effectiveness Transport for the Eurpean fleet. RTD Programme http://www.cordis.lu/transport/src/masisii.htm1999

  28. IMO. Recomendation on evacuation analysis for passenger ships and high-speed passenger craft. FP/U WP.4, 2000.http://www.imo.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Klüpfel, H., Meyer-König, T., Wahle, J., Schreckenberg, M. (2001). Microscopic Simulation of Evacuation Processes on Passenger Ships. In: Bandini, S., Worsch, T. (eds) Theory and Practical Issues on Cellular Automata. Springer, London. https://doi.org/10.1007/978-1-4471-0709-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0709-5_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-388-1

  • Online ISBN: 978-1-4471-0709-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics