Skip to main content

Iterons of Automata

  • Chapter
Collision-Based Computing

Abstract

Iterons of automata are periodic persistent propagating structures — patterns of symbols that emerge in cellular homogeneous nets of automata. In a sense, they are like fractal objects: they owe their existence to iterated automata mappings (IAMs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ablowitz M.J. Nonlinear evolution equations, inverse scattering and cellular automata. In: Solitons in Physics, Mathematics and Nonlinear Optics, P.J. Olver, D.H. Sattinger (Eds.) (Springer-Verlag, 1990) 1–26.

    Book  Google Scholar 

  2. Ablowitz M.J., Keiser J.M. and Takhtajan L.A. A class of stable multistate time-reversible cellular automata with rich particle content Physical Review A 44 (1991) 6909–6912.

    Google Scholar 

  3. Adamatzky A. Universal dynamical computation in multidimensional excitable lattices. International Journal of Theoretical Physics 37 (1988) 3069–3108.

    Article  MathSciNet  Google Scholar 

  4. Adamatzky A. Computing in Nonlinear Media and Automata Collectives (Institute of Physics Publishing, 2001).

    Book  MATH  Google Scholar 

  5. Andre D., Bennett III F.H. and Koza J.R. Evolution of intricate long-distance communication signals in cellular automata using genetic programming Artificial Life V Conference (Nara, Japan, May 16–18, 1996).

    Google Scholar 

  6. Ariki S. Some remarks on A1(1) soliton cellular automata ArXiv: math. QA/0008091 vl, 12 Aug. 2000.

    Google Scholar 

  7. Atrubin A.J. An iterative one-dimensional real-time multiplier IEEE Trans. on El. Computers EC-14 (1965) 394–399.

    Google Scholar 

  8. Barrett C.L. and Reidys C.M. Elements of a theory of computer simulation I: sequential CA over random graphs Applied Mathematics and Computation 98 (1999) 241–259.

    Google Scholar 

  9. Bobenko A., Bordeman M., Gunn C. and Pinkall U. On two integrable cellular automata Communications in Mathematical Physics 158 (1993) 127–134.

    Google Scholar 

  10. Boccara N., Nasser J. and Roger M. Particle-like structures and their interactions in spatio-temporal patterns generated by one-dimensional deterministic cellular-automaton rules Physical Review A 44 (1991) 866–875.

    Google Scholar 

  11. Bruschi M., Santini P.M. Cellular automata in 1+1, 2+1 and 3+1 dimensions, constants of motion and coherent structures Physica D 70 (1994) 185–209.

    MathSciNet  MATH  Google Scholar 

  12. Bruschi M., Santini P.M. and Ragnisco O. Integrable cellular automata Phis. Letters A 169 (1992) 151–160.

    Article  MathSciNet  Google Scholar 

  13. Chaudhuri P.P., Chowdhury D.R., Nadi S. and Chattopadhyay S. Additive Cellular Automata. Theory and Applications Vol. 1 (IEEE Computer Soc. Press, 1997).

    MATH  Google Scholar 

  14. Delorme M., Mazoyer J.(Editors) Cellular automata. A Parallel Model (Kluwer Academic, 1999).

    Google Scholar 

  15. Deqin Y. and Quinghu H. The enumeration of preimages and Gardens-of-Eden in sequential cellular automata Complex Systems 12 (2000) 83–91.

    Google Scholar 

  16. Fokas A.S.,New manifestations of solitons. In: Solitons in Physics, Mathematics and Nonlinear Optics, P.J. Olver, D.H. Sattinger (Eds.)(Springer-Verlag, 1990) 65–77.

    Chapter  Google Scholar 

  17. Fokas A.S. and Madala H.R. Emerging patterns and computational design of filter cellular automata Complex Systems 7 (1993) 389–413.

    Google Scholar 

  18. Fokas A.S., Papadopoulu E.P., Saridakis Y.G. and Ablowitz M.J. Interaction of simple particles in soliton cellular automata Studies in Applied Mathematics 81 (1989) 153–180.

    Google Scholar 

  19. Fokas A.S., Papadopoulou E.P. and Saridakis Y.G. Particles in soliton cellular automata Complex Systems 3 (1989) 615–633.

    Google Scholar 

  20. Fokas A.S., Papadopoulou E.P. and Saridakis Y.G. Soliton cellular automata Physica D 41 (1990) 297–321.

    Google Scholar 

  21. Fokas A.S., Papadopoulou E.P. and Saridakis Y.G. Coherent structures in cellular automata Physics Letters A 147 (1990) 369–379.

    Google Scholar 

  22. Fuchssteiner B. Filter automata admitting oscillating carrier waves Applied Mathematics Letters 4 (1991) 23–26.

    Google Scholar 

  23. Fuchssteiner B. and Kemper A. Multi-dimensional fast rule filter automata Physica D 129 (1999) 130–142.

    Google Scholar 

  24. Fukuda K., Okado M. and Yamada Y. Energy functions in box ball systems International Journal of Modern Physics A 15 (2000) 1379–1392.

    Google Scholar 

  25. Goldberg C.H. Parity filter automata Complex Systems 2 (1988) 91–141.

    Google Scholar 

  26. Grammaticos B., Ohta Y., Ramani A., Takahashi D. and Tamizhmani K.M. Cellular automata and ultra-discrete Painleve equations Physics Letters A 226 (1997) 53–58.

    Google Scholar 

  27. Hatayama G., Kuniba A. and Takagi T. Soliton cellular automata associated with crystal bases Nuclear Physics B 577 (2000) 619–645.

    Google Scholar 

  28. Hatayama G., Hikami K., Inoue R., Kuniba A., Takagi T. and Tohikiro T. The A (1) M automata related to crystals of symmetric tensors J. Math. Phys. 42 (2001) 274–308.

    Article  MathSciNet  MATH  Google Scholar 

  29. Hatayama G., Kuniba A., Okado M. and Takagi T. Combinatorial R matrices for a family of crystals: C’ and A2n)1 cases Progress in Mathematics 191 (2000) 105–139.

    MathSciNet  Google Scholar 

  30. Hatayama G., Kuniba A. and Takagi T. Factorization of combinatorial R matrices and associated cellular automata J. Stat. Phys. 102 (2001) 843–863.

    Google Scholar 

  31. Hatayama G., Kuniba A., Okado M., Takagi T. and Yamada Y. Scattering rules in soliton cellular automata associated with crystal bases arXiv: math.QA/0007175 2 (2001) 1–31.

    Google Scholar 

  32. Hatayama G., Kuniba A. and Takagi T. Simple Algorithm for Factorized Dynamics of gn-Automaton ArXiv: nlin. CG/0103022 (2001) 1–9.

    Google Scholar 

  33. Herken R. (Editor) The Universal Turing Machine. A Half-Century Survey(Springer-Verlag, 1988).

    MATH  Google Scholar 

  34. Hikami K. and Inoue R. Supersymmetric extension of the integrable box-ball system Journal of Physics A: Mathematical and General 33 (2000) 4081–4094.

    Article  MathSciNet  MATH  Google Scholar 

  35. Hikami K. and Inoue R. Symmetry of integrable cellular automaton Journal of Physics A: Mathematical and General 34 (2001) 2467–2476.

    Article  MathSciNet  MATH  Google Scholar 

  36. Hikami K., Inoue R. and Komori Y. Crystallization of the Bogoyavlensky lattice Journal of the Physical Society of Japan 68 (1999) 2234–2240.

    Google Scholar 

  37. Hordijk W., Shalizi C.R. and Crutchfield J.P. Upper bound on the products of particle interactions in cellular automata Physica D 154 (2001) 240–258.

    Google Scholar 

  38. Ibarra O.H., Jiang T. and Wang H. String editing on a one-way linear array of finite-state machines IEEE Tr. on Computers 41 (1992) 112–118.

    Google Scholar 

  39. Inoue R. and Hikami K. Construction of soliton cellular automaton from the vertex model the discrete 2D Toda equation and the Bogoyavlensky lattice Journal of Physics A: Mathematical and General 32 (1999) 6853–6868.

    Article  MathSciNet  MATH  Google Scholar 

  40. Jakubowski M., Steiglitz K. and Squier R. Relative computational power of integrable and nonintegrable soliton systems. Presented at: Fourth Workshop on Physics and Computation; PhysComp96 (Boston, 22–24 November 1996).

    Google Scholar 

  41. Jakubowski M., Steiglitz K. and Squier R.K. When can solitons compute? Complex Systems 10 (1996) 1–21.

    MathSciNet  MATH  Google Scholar 

  42. Jakubowski M., Steiglitz K. and Squier R.K. State transformations of colliding optical solitons and possible application to computation in bulk media Physical Review E 58 (1998) 6752–6758.

    Google Scholar 

  43. Jiang Z. An energy-conserved solitonic cellular automaton Journal of Physics A: Mathematical and General 25 (1992) 3369–3381.

    Article  MATH  Google Scholar 

  44. Kath W. and Kath B. Making waves: solitons and their optical applications SIAM News 31 (1998).

    Google Scholar 

  45. Matsukidaira J., Satsuma J., Takahashi D., Tokihiro T. and Torii M. Toda-type cellular automaton and its N-soliton solution Physics Letters A 225 (1997) 287–295.

    Google Scholar 

  46. Mazoyer J. and Terrier V. Signals in one-dimensional automata Theoretical Computer Science 217 (1999) 53–80.

    Google Scholar 

  47. Moriwaki S., Nagai A., Satsuma J., Tokihiro T., Torii M., Takahashi D. and Matsukidaira J. 2+1 dimensional soliton cellular automaton London Math. Soc. Lecture Notes Series 255 (1999) 334–342.

    MathSciNet  Google Scholar 

  48. Nagai A. and Satsuma J. Discrete soliton equations and convergence acceleration algorithms Physics Letters A 209 (1995) 305–312.

    Google Scholar 

  49. Nagai A. and Satsuma J. The Lotka-Volterra equations and the QR algorithm J. Phys. Soc. Japan 64 (1995) 3669–3674.

    Article  MathSciNet  MATH  Google Scholar 

  50. Nagai A., Takahashi D. and Tokihiro T. Soliton cellular automaton, Toda molecule equation and sorting algorithm Physics Letters A 255 (1999) 265–271.

    Google Scholar 

  51. Nagai A., Tokihiro T. and Satsuma J. The Toda molecule equation and the epsilon-algorithm Mathematics of Computation 67 (1998) 1565–1575.

    MathSciNet  MATH  Google Scholar 

  52. Nagai A., Tokihiro T. and Satsuma J. Ultra-discrete Toda molecule equation Physics Letters A 244 (1998) 383–388.

    MathSciNet  MATH  Google Scholar 

  53. Nagai A., Tokihiro T., Satsuma J., Willox R. and Kajiwara K. Two-dimensional soliton cellular automaton of deautonomized Toda-type Physics Letters A 234 (1997) 301–309.

    Google Scholar 

  54. Nobe A., Satsuma J. and Tokihiro T. From cellular automaton to difference equation: a general transformation method which preserves time evolution patterns Journal of Physics A: Mathematical and General 34 (2001) L371–L379.

    Article  MathSciNet  MATH  Google Scholar 

  55. Novikov S.P. Integrability in mathematics and theoretical physics: Solitons The Mathematical Intelligencer 14 (1992) 13–21.

    Google Scholar 

  56. Papatheodorou T.S., Ablowitz M.J. and Saridakis Y.G. A rule for fast computation and analysis of soliton automata Studies in Applied Mathematics 79 (1988)173–184.

    Google Scholar 

  57. Papatheodorou T.S. and Fokas A.S. Evolution theory, periodic particles and solitons in cellular automata Studies in Applied Mathematics 80 (1989) 165–182.

    Google Scholar 

  58. Papatheodorou T.S. and Tsantanis N.B. Fast soliton automata In: Optimal algorithms, H. Djidjev (Ed.) LNCS 401 (Springer-Verlag, 1989) 41–47.

    Google Scholar 

  59. Park J.K., Steiglitz K. and Thurston W.P. Soliton-like behavior in automata Physica D 19 (1986) 423–432.

    Google Scholar 

  60. Pogrebkov A.K. Discrete Schrodinger equation on finite field and associated cellular automaton. Preprint: zyz: math-ph/9811007 (1998) 1–13.

    Google Scholar 

  61. Puchalka T. and Siwak P. Automata and languages. Proc. of the Second International Symposium on Methods and Models in Automation and Robotics (1995, Miedzyzdroje, Poland); Eds. S. Banka, S. Domek, Z. Emirsajlow (Wyd. Uczelniane Politechniki Szczecinskiej, 1995) 467–480.

    Google Scholar 

  62. Siwak P. Minimal state cellular segment generation, Proc. IMACS’91 13th World Congress on Computation Applied Mathematics (July 22–26, 1991, Dublin) 2 (1991) 714–715.

    Google Scholar 

  63. Siwak P. Introduction to filter automata theory Studia z Automatyki 18 (1993) 87–110.

    Google Scholar 

  64. Siwak P. Models of filter automata(in Polish) Studia z Informatyki i Automatyki 19 (1994) 77–97.

    Google Scholar 

  65. Siwak P. Filter automata and PRR filtering Journal of Technical Physics 36 (1995) 153–163.

    Google Scholar 

  66. Siwak P. GA-aided design of some linear cellular automata Proc. of the Fourth International Symposium on Methods and Models in Automation and Robotics Siwak(MMAR’97) (26–29 August 1997, Miedzyzdroje, Poland); Eds.: S. Banka, S. Domek, Z. Emirsajlow (Wydawnictwo Politechniki Szczecinskiej, 1997) 1007–1012.

    Google Scholar 

  67. Siwak P. Filtrons and their associated ring computations International Journal of General Systems 27 (1998) 181–229.

    Google Scholar 

  68. Siwak P. On automata of some discrete recursive filters that support the filtrons Proceedings of the Fifth International Symposium on Methods and Models in Automation and Robotics (MMAR’98) (Miedzyzdroje, Poland, 1998); Eds. S. Domek, R. Kaszynski, L. Tarasiejski (Wydawnictwo Politechniki Szczecinskiej, 1998) 3 (Discrete Processes) 1069–1074.

    Google Scholar 

  69. Siwak P. Iterons, fractals and computations of automata In: D.M. Dubois (Ed.) Computing Anticipatory Systems. CASYS’98 - Second International Conference (Liege, Belgium, 1998) (American Institute of Physics Conference Proceedings, 1999) 465 (Woodbury, New York, 1999) 367–394.

    Chapter  Google Scholar 

  70. Siwak P. On automaton media supporting the filtrons In: D.M. Dubois (Ed.) Computing Anticipatory Systems. CASYS’99 - Third International Conference (Liege, Belgium, 1999) (American Institute of Physics Conference Proceedings) 517 (Woodbury, New York, 2000) 552–573.

    Google Scholar 

  71. Siwak P. Soliton-like dynamics of filtrons of cyclic automata Inverse Problems 17 (2001) 897–918.

    Google Scholar 

  72. Siwak P. Automata and filtrons of box-ball and crystal systems Intern. Journal of Computing Anticipatory Systems 8 (2001) 386–401.

    Google Scholar 

  73. Siwak P. Discrete solitons and automata (in Polish) Proceedings of the Conference Poznanskie Warsztaty Telekomunikacyjne ’2000 (Instytut Elektroniki i Telekomunikacji Pol. Poznanskiej, 2000) 481–486.

    Google Scholar 

  74. Snyder W. and Mitchell D.J. Accessible solitons Science 276 (1997) 1538–1541.

    Google Scholar 

  75. Squier R.K. and Steiglitz K. Programmable parallel arithmetic in cellular automata using a particle model Complex Systems 8 (1994) 311–323.

    Google Scholar 

  76. Squier R.K., Steiglitz K. and Jakubowski M. Implementation of parallel arithmetic in a cellular automaton Proc. of the 1995 Intern. Conf. on Application Specific Processors (Strasbourg, France, 1995) 1–8.

    Google Scholar 

  77. Steiglitz K. Time-gated Manakov spatial solitons are computationally universal Physical Review E 63 (2000) 16608.

    Google Scholar 

  78. Steiglitz K. Multistable collision cycles of Manakov spatial solitons Physical Review E 63 (2001) 04407.

    Google Scholar 

  79. Steiglitz K., Kamal I. and Watson A. Embedding computation in one-dimensional automata by phase coding solitons IEEE Tr. on Computers C-37 (1988) 138–145.

    Google Scholar 

  80. Takahashi D. On a fully discrete soliton system Proceedings NEEDS’91 (Nonlinear Evolution Equations and Dynamical Systems) (Italy, 1991); Eds. M. Boiti, L. Martina and F. Pempinelli (World Scientific, 1991) 245–249.

    Google Scholar 

  81. Takahashi D. On some soliton systems defined by using boxes and balls International Symposium on Nonlinear Theory and Its Applications (NOLTA’93) (Hawaii, USA, 1993) 555–558.

    Google Scholar 

  82. Takahashi D. and Matsukidaira J. On discrete soliton equations related to cellular automata Physics Letters A 209 (1995) 184–188.

    Google Scholar 

  83. Takahashi D. and Matsukidaira J. Box and ball system with carrier and ultradiscrete modified KdV equation Journal of Physics A: Mathematical and General 30 (1997) L733–L739.11 Iterons of Automata 353

    Article  MathSciNet  MATH  Google Scholar 

  84. Takahashi D. and Satsuma J. A soliton cellular automaton Journal of the Physical Society of Japan 59 (1990) 3514–3519.

    Google Scholar 

  85. Takahashi H. Information transmission in one-dimensional cellular space and the maximum invariant set Information and Control 33 (1977) 35–55.

    Google Scholar 

  86. Tokihiro T., Nagai A. and Satsuma J. Proof of solitonical nature of box and ball systems by means of inverse ultra-discretization Inverse Problems 15 (1999) 1639–1662.

    MathSciNet  MATH  Google Scholar 

  87. Tokihiro T., Takahashi D., Matsukidaira J. and Satsuma J. From soliton equations to integrable cellular automata through a limiting procedure Physical Review Letters 76 (1996) 3247–3250.

    Google Scholar 

  88. Tokihiro T., Takahashi D. and Matsukidaira J. Box and ball systems as a realization of ultradiscrete nonautonomous KP equation Journal of Physics A: Mathematical and General 33 (2000) 607–619.

    MathSciNet  MATH  Google Scholar 

  89. Torii M., Takahashi D. and Satsuma J. Combinatorial representation of invariants of a soliton cellular automaton Physica D 92 (1996) 209–220.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Siwak, P. (2002). Iterons of Automata. In: Adamatzky, A. (eds) Collision-Based Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0129-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0129-1_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-540-3

  • Online ISBN: 978-1-4471-0129-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics