Skip to main content

Symbol Super Colliders

  • Chapter
Collision-Based Computing

Abstract

We argue that lattice-gas computers are the conceptual offspring of colliding-beams particle accelerators. Instead of streams of physical particles, streams of symbolic tokens are run through one another in a cross-current fashion, intersecting at pre-arranged places and times. In this way, an astronomical number of tokens continually collide and interact in a disciplined choreography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. BENNETT, Charles, “Notes on the history of reversible computation”, IBM J. Res. Develop. 32 (1988), 16–23.

    Google Scholar 

  2. BRUSH, Stephen, The Kind of Motion We Call Heat: Physics and the Atomists, North-Holland 1986.

    Google Scholar 

  3. DOOLEN, Gary, et al. (ed.), Lattice-Gas Methods for Partial Differential Equations, Addison-Wesley 1990.

    Google Scholar 

  4. FEYNAMN, Richard, The Character of Physical Law, MIT Press 1965.

    Google Scholar 

  5. FREDKIN, Edward, and Tommaso TOFFOLI, “Conservative logic”, Int. J. Theor. Phys. 21 (1982), 219–253.

    Article  MathSciNet  MATH  Google Scholar 

  6. FRISCH, Uriel, et al., “Lattice gas hydrodynamics in two and three dimensions”, [3], 77–135.

    Google Scholar 

  7. FRISCH, Uriel, Brosl HASSLACHER, and Yves POMEAU, “Lattice-gas automata for the Navier-Stokes equation”, Phys. Rev. Lett. 56 (1986), 1505–1508.

    Article  Google Scholar 

  8. GREENSPAN, Donald, Discrete Models, Addison-Wesley 1973.

    Google Scholar 

  9. HARDY, J., O. DE PAZZIS, and Yves POMEAU, “Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions”, Phys. Rev. A13 (1976), 1949–1960.

    Google Scholar 

  10. JACOPINI, Giuseppe, and Giovanna SONTACCHI, “Reversible parallel computation: an evolving space model”, Theor. Comp. Sci. 73 (1990), 1–46.

    MathSciNet  MATH  Google Scholar 

  11. LUCRETIUS, Titus Carus, On the Nature of the Universe, translated by Ronald LATHAM, Penguin 1951.

    Google Scholar 

  12. MARGOLUS, Norman “Physics-like models of computation”, Physica D 10 (1984), 81–95.

    Article  MathSciNet  Google Scholar 

  13. STRANG, Gilbert, Introduction to Applied Mathematics, Wellesley 1986.

    Google Scholar 

  14. TOFFOLI, Tommaso, “Design and realization of a directional, wide-angle cosmic-ray detector utilizing the Cerenkov effect” (in Italian), Doctoral Thesis, Università di Roma, Istituto di Fisica (1967).

    Google Scholar 

  15. ’T HOOFT, Gerardus, et al., “Quantum field-theoretic behavior of a deterministic cellular automaton”, Nucl. Phys. B 386 (1992), 495–519.

    Google Scholar 

  16. TOFFOLI, Tommaso, “Cellular Automata Mechanics”, Tech. Rep. 208 (1977), Comp. Comm. Sci. Dept., Univ. of Michigan.

    Google Scholar 

  17. TOFFOLI, Tommaso, “How cheap can mechanics’ first principles be?” Complexity, Entropy, and the Physics of Information (W. H. ZUREK ed.), Addison-Wesley 1990, 301–318.

    Google Scholar 

  18. TOFFOLI, Tommaso, and Ted BACH, “A common language for ‘programmable matter’ (cellular automata and all that)”, AI*IA Notizie (Journal of the Italian Artificial Intelligence Association) 14:2 (June 2001), 32.

    Google Scholar 

  19. TOFFOLI, Tommaso, and Norman MARGOLUS, Cellular Automata Machines A New Environment for Modeling, MIT Press 1987.

    Google Scholar 

  20. TOFFOLI, Tommaso, and Norman MARGOLUS, “Invertible Cellular Automata: A Review”, Physica D 45 (1990), 229–253.

    Article  MathSciNet  MATH  Google Scholar 

  21. TOFFOLI, Tommaso, and Norman MARGOLUS, “Programmable matter”, Physica D 47 (1991), 263–272.

    Article  MathSciNet  Google Scholar 

  22. TOFFOLI, Tommaso, “Action, or the fungibility of computation”, Feynman and Computation (ed. Anthony HEY), Perseus 1998, 348–392.

    Google Scholar 

  23. ULAM, Stanislaw, “Random Processes and Transformations”, Proc. Int. Congr. Mathem. (held in 1950) 2 (1952), 264–275.

    MathSciNet  Google Scholar 

  24. WOLFRAM, Stephen, “Computation Theory of Cellular Automata”, Commun. Math. Phys. 96 (1984), 15–57.

    Article  Google Scholar 

  25. ZUSE, Konrad, Rechnender Raum, Vieweg (Braunschweig) 1969; translated as “Calculating Space”, Tech. Transl. AZT-70–164-GEMIT (1970), MIT Project MAC.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Toffoli, T. (2002). Symbol Super Colliders. In: Adamatzky, A. (eds) Collision-Based Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0129-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0129-1_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-540-3

  • Online ISBN: 978-1-4471-0129-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics