Skip to main content

Organic Catalysis: A New and Broadly Useful Strategy for Living Polymerization

  • Conference paper
Biodegradable Polymers and Plastics

Abstract

Significant effort has gone into the development of biodegradable polymers over the past few decades with the purpose of designing resorbable biomaterials, and, more recently, for designing commodity thermoplastics from renewable resources. Aliphatic polyesters, particularly polylactide, combine biocompatibility and biodegradability with remarkable physical properties and have the requisite thermal stability at processing temperatures. One of the most common synthetic routes to polyesters uses transition metal initiation compounds to affect the ring-opening polymerization (ROP) of the cyclic ester monomer. Advances in organometallic chemistry in the design and synthesis of single-site metal catalysts for ROP techniques1 has enabled the preparation of well-defined functional polymeric materials with predictable molecular weights, narrow polydispersities, architectural and stereochemical control. The ring-opening (ROP) polymerization of lactide has been accomplished from a variety of metal catalysts including aluminium, tin, zinc and yttrium through a coordination-insertion mechanism.2 Removal of the metal contaminant, bound to the chain-end, must be considered for many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. For example: Ovitt, T. M., and Coates, G. W. 1999, Stereoselective Ring-Opening Polymerization of meso-Lactide: Synthesis of Syndiotactic Poly(lactic acid). J. Am. Chem. Soc. 121: 4072–4073; Chamberlain, B.M., Sun, Y., Hagadorn, J.R., Hemmesch, E.W., Young, V.G., Jr., Pink, M., Hillmyer, M.A., and Tolman, W.B., 1999, Discrete Yttrium(III) Complexes as Lactide Polymerization Catalysts. Macromolecules 32: 2400-2402; Cheng, M., Attygalle, A. B., Lobkovsky, E., and Coates, G. W., 1999, Single-Site Catalysts for Ring-Opening Polymerization: Synthesis of Heterotactic Poly(lactic acid) from rac-Lactide. J. Am. Chem. Soc. 121: 11583-11584; Chisholm, M. H., Eilerts, N., Huffman, J., Iyre S., Pacold, M., and Phomphrai, K., 2001, Molecular Design of Single-Site Metal Alkoxide Catalyst Precursors for Ring-Opening Polymerization Reactions Leading to Polyoxygenates. 1. Polylactide Formation by Achiral and Chiral Magnesium and Zinc Alkoxides, (η3-L)MOR, Where L = Trispyrazolyl-and Trisindazolylborate Ligands. J. Am. Chem. Soc. 122: 11845-11854; O’Keef, B., Monnier, S., Hillmyer, M. A., and Tolman, W. B. 2001, Rapid and controlled polymerization of lactide by structurally characterized ferric alkoxides. J. Am. Chem. Soc. 123: 339-40.

    Article  CAS  Google Scholar 

  2. For example: Kowalski, A., Duda, A., and Penczek, S., 1998, Polymerization of L,L-Lactide Initiated by Aluminum Isopropoxide Trimer or Tetramer. Macromolecules 31: 2114–2122; Dubois, Ph., Jacobs, C., Jerome, R., and Tessie, Ph., 1991, Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide. Macromolecules 24: 2266-2270; Kricheldorf, H. R., Lee, S., and Bush, S., 1996, Polylactones 36. Macrocyclic Polymerization of Lactides with Cyclic Bu2Sn Initiators Derived from 1,2-Ethanediol, 2-Mercaptoethanol, and 1,2-Dimercaptoethane. Macromolecules 29: 1375-1381; Stevels, W. M., Dijkstra, and P. Feijen, J., 1997, New initiators for the ring-opening polymerization of cyclic esters. Trends Polym. Sci. 5: 300-305.

    Article  CAS  Google Scholar 

  3. For example: Kumar, A., and Gross, R. A., 2000, Candida antarctica Lipase B-Catalyzed Transesterification: New Synthetic Routes to Copolyesters. J. Am. Chem. Soc. 122: 11767–11770; Kumar, A., and Gross, R. A., 2000, Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and temperature. Biomacromolecules 1: 133-138; Kobayashi, S., Uyama, H., Namekawa, S., and Hayakawa, H., 1998, Enzymic Ring-Opening Polymerization and Copolymerization of 8-Octanolide by Lipase Catalyst. Macromolecules 31: 5655.

    Article  CAS  Google Scholar 

  4. For example: Ahrendt, K. A., Borths, C. J., and MacMillan, D. W. C., 2000, New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels-Alder Reaction. J. Am. Chem. Soc. 122: 4243–4244; Jen, W. S., Wiener, J. J. M., and MacMillan, D. W. C., 2000, New Strategies for Organic Catalysis: The First Enantioselective Organocatalytic 1,3-Dipolar Cycloaddition. J. Am. Chem. Soc. 122: 9874-9875; Dong, V. M., and MacMillan D. W. C., 2001, Design of a New Cascade Reaction for the Construction of Complex Acyclic Architecture: The Tandem Acyl-Claisen Rearrangement. J. Am. Chem. Soc. 123: 2448-2449; Fu, G. C., 2000, Enantioselective Nucleophilic Catalysis with “Planar-Chiral” Heterocycles. Acc. Chem. Res. 33: 412-420; Arai, S., Bellemin-Laponnaz, S., and Fu, G. C., 2001, Kinetic resolution of amines by a nonenzymatic acylation catalyst. Angew. Chem. Int. Ed. 40: 234-236; Tao, B., Lo, M. C., and Fu, G. C., 2001, Planar-chiral pyridine N-oxides, a new family of asymmetric catalysts: exploiting an eta(5)-C(5)Ar(5) ligand to achieve high enantioselectivity. J. Am. Chem. Soc. 123: 353-354; Cordova, A., Notz, W., Zhong, G., Betancort, J. M., and Barbas, C. F., 2002, A Highly Enantioselective Amino Acid-Catalyzed Route to Functionalized α-Amino Acids. J. Am. Chem. Soc. 124: 1842-1843; Cordova, A., Notz, W., Zhong, G., Betancort, J. M., and Barbas, C. F., 2002, A Highly Enantioselective Route to Either Enantiomer of Both α-and β-Amino Acid Derivatives. J. Am. Chem. Soc. 124: 1866-1867.

    Article  CAS  Google Scholar 

  5. For example: Vedejs, E., Daugulis, O., and Diver, S. T., 1996, Enantioselective Acylations Catalyzed by Chiral Phosphines. J. Org. Chem. 61: 430–431; Vedejs, E., and Rozners, E., 2001, Parallel Kinetic Resolution under Catalytic Conditions: A Three-Phase System Allows Selective Reagent Activation Using Two Catalysts. J. Am. Chem. Soc. 123: 2428-2429; Qiao, S., and Fu, G. C., 1998, The First Application of a Planar-Chiral Phosphorus Heterocycle in Asymmetric Catalysis: Enantioselective Hydrogenation of Dehydroamino Acids. J. Org. Chem. 63: 4168-4169.

    Article  CAS  Google Scholar 

  6. For example: Fu, G. C., 2000, Enantioselective Nucleophilic Catalysis with “Planar-Chiral” Heterocycles. Ace. Chem. Res. 33: 412–420; Arai, S., Bellemin-Laponnaz, S., and Fu, G. C., 2001, Kinetic resolution of amines by a nonenzymatic acylation catalyst. Angew. Chem. Int. Ed. 40: 234-236; Tao, B., Lo, M. C., and Fu, G. C., 2001, Planar-chiral pyridine N-oxides, a new family of asymmetric catalysts: exploiting an eta(5)-C(5)Ar(5) ligand to achieve high enantioselectivity. J. Am. Chem. Soc. 123: 353-354; Fu, G.C., 2001, The chemistry of borabenzenes (1986-2000). Adv. Organomet. Chem. 47: 101-119; Fu, G. C., 2001, Asymmetric catalysis with “planar-chiral” heterocycles. Pure Appl. Chem. 73: 347-357; Hodous, B. L., and Fu, G. C., 2002, Enantioselective Staudinger Synthesis of β-Lactams Catalyzed by a Planar-Chiral Nucleophile. J. Am. Chem. Soc. 124: 1578-1579.

    Article  CAS  Google Scholar 

  7. Liu, L., and Breslow, R., 2002, A Potent Polymer/Pyridoxamine Enzyme Mimic. J. Am. Chem. Soc. 124: 4978–4979.

    Article  CAS  Google Scholar 

  8. Borman, S., 2002, Improvin classics. Organocatalysts inspire ‘greener’ asymmetric versions of classic synthetic reactions. C&E News 80(8): 33.

    Article  Google Scholar 

  9. For example: Herrmann, W. A., and Kocher, C., 1997, N-heterocyclic Carbenes. Angew. Chem. Int. Ed. Eng. 36: 2162–2187; Spassky, N., Wisniewski, M., Pluta, C., and LeBorgne, A., 1996, Highly stereoelective polymerization of rac-(D,L)-lactide with a chiral Schiff’s base/aluminum alkoxide initiator. Macromol. Chem. Phys. 197: 2627-2637.

    Article  CAS  Google Scholar 

  10. Vedejs, E., Bennett, N. S., Conn, L. M., Diver, S. T., Gingras, M., Lin, S., Oliver, P. A., and Peterson, M. J., 1993, Tributylphosphine-catalyzed acylations of alcohols: scope and related reactions. J. Org. Chem. 58: 7286–7288; Vedejs, E., and Diver, S. T., 1993, Tributylphosphine: a remarkable acylation catalyst. J. Am. Chem. Soc. 115: 3358-3359.

    Article  CAS  Google Scholar 

  11. For example: Parshall, G. W., and Ittel, S. D., 1992, Homogeneous Catalysis, Wiley-Interscience: New York; Sanford, M. S., Love, J. A., and Grubbs, R. H., 2001, A versatile precursor for the synthesis of new ruthenium olein metathesis catalysts. Organometallics 20: 5314-5318; Fu, G.C., Nguyen, S.T., and Grubbs, R.H., 1993, Catalytic ring-closing metathesis of functionalized dienes by a ruthenium carbene complex. J. Am. Chem. Soc. 115: 9856-9857.

    Google Scholar 

  12. Reetz, M. T., 2001, Combinatorial and evolution-based methods in the creation of enantioselective catalysts. Angew. Chem. Int. Ed. 40: 284–310.

    Article  CAS  Google Scholar 

  13. For example: Burk, M. J., Feaster, J. E., and Harlow, R. L., 1991, New chiral phospholanes; synthesis, characterization, and use in asymmetric hydrogenation reactions. Tetrahedron: Asym. 2: 569–592; Gladiali, S., Dore, A., Fabbri, D., De Lucchi, O., and Manassero, M., 1993, Novel atropisomeric phosphorus ligands: 4,5-dihydro-3H-dinaphtho[2,1-c;1′,2′-e]phosphepine derivatives. Tetrahedron: Asym. 5: 511-514; McNeil, P. A., Roberts, N. K., and Bosnich, B., 1981, Asymmetric synthesis. Asymmetric catalytic hydrogenation using chiral chelating six-membered ring diphosphines. J. Am. Chem. Soc. 103: 2273-2280.

    Article  CAS  Google Scholar 

  14. For example: Ovitt, T. M., and Coates, G. W. 1999, Stereoselective Ring-Opening Polymerization of meso-Lactide: Synthesis of Syndiotactic Poly(lactic acid). J. Am. Chem. Soc. 121: 4072–4073; Chamberlain, B.M., Sun, Y., Hagadorn, J.R., Hemmesch, E.W., Young, V.G., Jr., Pink, M., Hillmyer, M.A., and Tolman, W.B., 1999, Discrete Yttrium(III) Complexes as Lactide Polymerization Catalysts. Macromolecules 32: 2400-2402; Cheng, M., Attygalle, A. B., Lobkovsky, E., and Coates, G. W., 1999, Single-Site Catalysts for Ring-Opening Polymerization: Synthesis of Heterotactic Poly(lactic acid) from rac-Lactide. J. Am. Chem. Soc. 121: 11583-11584; Chisholm, M. H., Eilerts, N., Huffman, J., Iyre S., Pacold, M., and Phomphrai, K., 2001, Molecular Design of Single-Site Metal Alkoxide Catalyst Precursors for Ring-Opening Polymerization Reactions Leading to Polyoxygenates. 1. Polylactide Formation by Achiral and Chiral Magnesium and Zinc Alkoxides, (η3-L)MOR, Where L = Trispyrazolyl-and Trisindazolylborate Ligands. J. Am. Chem. Soc. 122: 11845-11854; Dove, A., Gibson, V. C., Marshall, E. L., White, A.J. P., and Williams, D., 2001, A well defined tin(II) initiator for the living polymerisation of lactide. Chem. Comm. 283-284.

    Article  CAS  Google Scholar 

  15. For example: Arduengo, A. J., 1999, Looking for Stable Carbenes: The Difficulty in Starting Anew. Acc. Chem Res. 32: 913–921; Arduengo, A. J., and Krfczyk, R., 1998, On the search of stable carbenes. Chem. Z. 32: 6-14; Bourissou, D., Guerret, O., Gabbaie, F. P., and Betrand, G., 2000, Stable carbenes. Chem. Rev. 100: 39-91; Herrmann, W.A., and Kocher, C., 1997, Essays on organometallic chemistry. 9. N-Heterocyclic carbenes. Angew. Chem., Int. Ed. Eng. 36: 2162-2165.

    Article  CAS  Google Scholar 

  16. For example: Herrmann, W. A., Goossen, L. Kocher, C., and Artus, G., 1996, Heterocyclic carbenes. 9. Chiral heterocyclic carbenes in asymmetric homogeneous catalysis. Angew. Chem., Int. Edt. Eng. 35: 2805–2807; Lapert, M., 1988, The coordination chemistry of electron-rich alkenes (enetetramines). J. Organomet. Chem. 358: 185-187.

    Article  CAS  Google Scholar 

  17. Initial screening of different organic catalysts, solvents and a variety of polymerization conditions was performed on a Quest 210 reactor (Argonaut Technologies). This robotic reactor allowed up to 20 polymerizations to be performed in parallel under the appropriate environment. Polymers with targeted DP of 30 were prepared and assayed by SEC and 1H NMR to optimize the polydispersity and the molecular weight control. For general description of ROP in Quest see: Argonaut Application Note 33.

    Google Scholar 

  18. Nederberg, F., Connor, E. F., Möller, M., Glauser, T., and Hedrick, J. L., 2001, New paradigms for organic catalysts: The first organocatalytic living polymerization. Angew. Chem. Int. Eng. Ed. 40: 2712–2715.

    Article  CAS  Google Scholar 

  19. Möller, M., Kånge, R., and Hedrick, J. L., 2000, Sn(OTf)2 and Sc(OTf)3: efficient and versatile catalysts for the controlled polymerization of lactones. J. Polym. Sci., Part A, Polym. Chem. 38: 2067–2074.

    Article  Google Scholar 

  20. Nederberg, F., Connor, E. F., Moller, M., Glauser, T., and Hedrick, J. L., 2001, New Paradigms for Organic Catalysts: The First Organocatalytic Living Polymerization. Angew. Chem. Int. Eng. Ed. 40: 2712–2715.

    Article  CAS  Google Scholar 

  21. Nederberg, F., Connor, E. F., Glauser, T., and Hedrick, J. L., 2001, Organocatalytic chain scission of poly(lactides): a general route to controlled molecular weight, functionality and macromolecular architecture. Chem. Commun. 2066–2067.

    Google Scholar 

  22. Myers, M., Connor, E., Glauser, T., Möck, A., Nyce, G., and Hedrick, J. L., 2001, Phosphines: nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides. J. Polym. Sci. Part A: Polym. Chem. Ed. 40: 844–851.

    Article  Google Scholar 

  23. For example: Dubois, Ph., Barakat, I., Jerome, R. and Teyssie, Ph., 1993, Macromolecular engineering of polyactones and polyactides. 12. Study of the depolymerization reactions of poly(ε-caprolactone) with functional aluminum alkoxide end groups. Macromolecules 26:4407–4412.

    Article  CAS  Google Scholar 

  24. Connor, E. F., Nyce, G. W., Möck, A., and Hedrick, J. L., 2002, First Example of N-Heterocyclic Carbenes as Catalysts for Living Polymerization: Organocatalytic Ring-Opening Polymerization of Cyclic Esters. J. Am. Chem. Soc. 124: 914–915

    Article  CAS  Google Scholar 

  25. Trollsås, M., and Hedrick, J. L., 1998, Dendrimer-like Star Polymers. J. Am. Chem. Soc. 120: 4644–4651; Trollsås, M., Claesson, H., Atthoff, B., and Hedrick, J. L., 1998, Layered dendritic block copolymers. Angew. Chem. Int. Ed. Engl. 37: 3132-3136; Trollsås, M., Hedrick, J. L., Mecerreyes, D., Dubois, Ph., Jérôme, R., Ihre, H., and Hult, A., 1998, Versatile Synthesis to Highly Functional Branched and Dendri-Graft Polyesters. Macromolecules 31: 2756-2763; Trollsås, M., Kelly, M. A., Claesson, H., Siemens, R., and Hedrick, J. L., 1999, Highly branched block copolymers: design, synthesis, and morphology. Macromolecules 32: 4917-4924.

    Article  Google Scholar 

  26. Nguyen, C., Carter, K. R., Hawker, C. J., Hedrick, J. L., Jaffy, R., Miller, R. D., Remenar, J., Rhee, H., Rice, P., Toney, M., and Yoon, D., 1999, Low-Dielectric, Nanoporous Organosilicate Films Prepared via Inorganic/Organic Polymer Hybrid Templates. Chem. Mater. 11: 3080–3085; Nguyen, C., Hawker, C. J., Miller, R., Hedrick, J. L., and Hilborn, J. G., 2000, Hyperbranched Polyesters as Nanoporosity Templating Agents for Organosilicates. Macromolecules 33: 4281-4284; Heise, A., Nguyen, C., Malek, R., Hedrick, J. L., Frank, C. W., and Miller, R. D., 2000, Starlike Polymeric Architectures by Atom Transfer Radical Polymerization: Templates for the Production of Low Dielectric Constant Thin Films. Macromolecules 33: 2346-2354; Mecerreyes, D., Huang, E., Magbitang, T., Volksen, W., Hawker, C. J., Lee, V., Miller, R. D., and Hedrick, J. L., 2001, Application of hyperbranched block copolymers as templates for the generation of nanoporous organosilicates. High Perform. Polym. 13: S11-S19; Hedrick, J. L., Hawker, C. J., Trollsas, M., Remenar, J., Yoon, D. Y., and Miller, R. D., 1998, Templating nanoporosity in organosilicates using well-defined branched macromolecules. Mat. Res. Symp. Proc. 519: 65-75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Nyce, G.W., Connor, E.F., Glauser, T., Möck, A., Hedrick, J.L. (2003). Organic Catalysis: A New and Broadly Useful Strategy for Living Polymerization. In: Chiellini, E., Solaro, R. (eds) Biodegradable Polymers and Plastics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9240-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9240-6_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4854-2

  • Online ISBN: 978-1-4419-9240-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics