Skip to main content

DNA Methylation and Human Diseases

  • Conference paper
Peroxisomal Disorders and Regulation of Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 544))

  • 602 Accesses

Abstract

Genes are switched on and off in tissue specific manner and at specific developmental stages (Jaenisch and Bird, 2003; Ehrlich, 2003; Futscher et al 2002). This transcriptional activity of a given gene is regulated by many factors, among which are that affecting the chromatin structure, like histones modifications and the epigenetic modifications of DNA. The best-known epigenetic modification of DNA is the methyaltion at the 5’ position of cytosines. In mammals this modification of DNA occurs mostly at cytosines in a CpG context. In the recent years a close association was established between the methylation state of a DNA and its transcription activity. Regions that are actively transcribed (Euchromatin) have their promoter regions with mostly unmethylated CpG sites, acetylated histones tail and methylated lysine 4 on H3 subunits, while transcriptionally silent regions (heterochromatin) have mostly methylated CpG sites, deacetylated histones and methylated lysine 9 on H3 subunits (Fig. 1) (Fournier et al 2002; Tamaru and Selker, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amir, R.E., Van den Veyver, I.B., Wan, M., Tran, C.Q., Francke, U., and Zoghbi, H.Y., 1999, Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 23:185–188.

    Article  PubMed  CAS  Google Scholar 

  • Baylin, S.B., Herman, J.G., Graff, J.R., Vertino, P.M., and Issa, J.P., 1998, Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 72:141–196. Review.

    Article  PubMed  CAS  Google Scholar 

  • Bielinska, B., Blaydes, S.M., Buiting, K., Yang, T., Krajewska-Walasek, M., Horsthemke, B., and Brannan, C.I., 2000, De novo deletions of SNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch.. Nat Genet. 25:74–78.

    Article  PubMed  CAS  Google Scholar 

  • Buiting, K., Gross, S., Lich, C, Gillessen-Kaesbach, G., El-Maarri, O., and Horsthemke, B., 2003, Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet. 72:571–577.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, M., 2003, Expression of various genes is controlled by DNA methylation during mammalian development. J Cell Biochem. 88:899–910.

    Article  PubMed  CAS  Google Scholar 

  • El-Maarri, O., Buiting, K., Peery, E.G., Kroisel, P.M., Balaban, B., Wagner, K., Urman, B., Heyd, J., Lich, C., Brannan, C.I., Walter, J., and Horsthemke, B., 2001, Maternal methylation imprints on human chromosome 15 are established during or after fertilization. Nat Genet. 27:341–344.

    Article  PubMed  CAS  Google Scholar 

  • El-Maarri, O., Seoud, M, Coullin, P., Herbiniaux, U., Oldenburg, J., Rouleau, G., Slim, R., 2003, Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum Molecular geneticsIn press

    Google Scholar 

  • Eads, C.A., Danenberg, K.D., Kawakami, K., Saltz, L.B., Danenberg, P.V., and Laird, P.W., 1999, CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res. 59:2302–2306.

    PubMed  CAS  Google Scholar 

  • Fournier, C, Goto, Y., Ballestar, E., Delavai, K., Hever, A.M., Esteller, M., and Feil, R., 2002, Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBOJ. 21:6560–670.

    Article  CAS  Google Scholar 

  • Frommer, M., McDonald, L.E., Millar, D.S., Colhs, CM., Watt, F., Gngg, G.W., and Molloy, P.L., 1992, A genomic sequencing protocol that yields a positive display of 5- methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA. 89:1827–1831.

    Article  PubMed  CAS  Google Scholar 

  • Futscher, B.W., Oshiro, M.M., Wozniak, R.J., Holtan, N., Hanigan, CL., Duan, H., and Domann, F.E., 2002, Role for DNA methylation in the control of cell type specific maspin expression. Nat Genet. 31:175–179.

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch, R., and Bird, A., 2003, Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 33 Suppl:245–254.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P.A., and Baylin, S.B., 2002, The fundamental role of epigenetic events in cancer. Nat Rev Genet. 3:415–428.

    Article  PubMed  CAS  Google Scholar 

  • Judson, H., Hayward, B.E., Sheridan, E., and Bonthron, D.T., 2002, A global disorder of imprinting in the human female germ line. Nature. 416:539–542.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, R.S., Wijmenga, C, Luo, P., Stanek, A.M., Canfield, T.K., Weemaes, CM., and Gartler, S.M., 1999, The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA. 96:14412–14417.

    Article  PubMed  CAS  Google Scholar 

  • Helwani, M.N., Seoud, M., Zahed, L., Zaatari, G., Khalil, A., and Slim, R., 1999, A familial case of recurrent hydatidiform molar pregnancies with biparental genomic contribution. Hum Genet. 105:112–1115.

    Article  PubMed  CAS  Google Scholar 

  • Kanai, Y., Ushijima, S., Nakanishi, Y., Sakamoto, M., and Hirohashi, S., 2003, Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett. 192:75–82.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, F., Seifert, H.H., Florl, A.R., Santourlidis, S., Steinhoff, C, Swiatkowski, S., Mahotka, C, Gerharz, CD., and Schulz, W.A., 2003, Decrease of DNA methyltransferase 1 expression relative to cell proliferation in transitional cell carcinoma. Int J Cancer. 104:568–578.

    Article  PubMed  CAS  Google Scholar 

  • Laird, P.W., 2003, Early detection: The power and the promise of DNA methylation markers. Nat Rev Cancer. 3:253–266.

    Article  PubMed  CAS  Google Scholar 

  • Li, H.W., Tsao, S.W., and Cheung, A.N., 2002, Current understandings of the molecular genetics of gestational trophoblastic diseases. Placenta. 23:20–31.

    Article  PubMed  Google Scholar 

  • Meehan, R.R., 2003, DNA methylation in animal development. Semin Cell Dev Biol. 14:53–65.

    Article  PubMed  CAS  Google Scholar 

  • Moglabey, Y.B., Kircheisen, R., Seoud, M., El Mogharbel, N., Van den Veyver, I., and Slim, R., 1999, Genetic mapping of a maternal locus responsible for familial hydatidiform moles. Hum Mol Genet. 8:667–671.

    Article  PubMed  CAS  Google Scholar 

  • Nan, X., Ng, H.H., Johnson, C.A., Laherty, CD., Turner, B.M., Eisenman, R.N., and Bird, A., 1998, Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 393:386–389.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, R.D., and Knepper, J.L., 2001, Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet. 2:153–175.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, S., and Wada, T., 2000, Parent-of-origin specific histone acetylation and reactivation of a key imprinted gene locus in Prader-Willi syndrome. Am J Hum Genet. 66:1958–1962.

    Article  PubMed  CAS  Google Scholar 

  • Schweizer, J., Zynger, D., and Francke, U., 1999, In vivo nuclease hypersensitivity studies reveal multiple sites of parental origin-dependent differential chromatin conformation in the 150 kb SNRPN transcription unit. Hum Mol Genet. 8:555–566.

    Article  PubMed  CAS  Google Scholar 

  • Sensi, A., Gualandi, F., Pittalis, M.C., Calabrese, O., Falciano, F., Maestri, I., Bovicelli, L., and Calzolari, E., 2000, Mole maker phenotype: possible narrowing of the candidate region. Eur J Hum Genet. 8:641–644.

    Article  PubMed  CAS  Google Scholar 

  • Shahbazian, M.D., and Zoghbi, H.Y., 2002, Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am J Hum Genet. 71:1259–1272.

    Article  PubMed  CAS  Google Scholar 

  • Shahbazian, M.D., and Zoghbi, H.Y., 2001, Molecular genetics of Rett syndrome and clinical spectrum of MECP2 mutations. Curr Opin Neurol. 14:171–176.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H., Gabrielson, E., Chen, W., Anbazhagan, R., van Engeland, M., Weijenberg, M.P., Herman, J.G., and Baylin, S.B., 2002, A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet. 31:141–149.

    Article  PubMed  CAS  Google Scholar 

  • Tamaru, H., and Selker, E.U., 2001, A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature. 414:277–283.

    Article  PubMed  CAS  Google Scholar 

  • Walter, J., and Paulsen, M., 2003, Imprinting and disease. Semin Cell Dev Biol. 14:101–110.

    Article  PubMed  CAS  Google Scholar 

  • Wijmenga, C, van den Heuvel, L.P., Strengman, E., Luyten, J.A., van der Burgt, I.J., de Groot, R., Smeets, D.F., Draaisma, J.M., van Dongen, J.J., De Abreu, R.A., Pearson, P.L., Sandkuijl, L.A., and Weemaes, CM., 1998, Localization of the ICF syndrome to chromosome 20 by homozygosity mapping. Am J Hum Genet. 63:803–809.

    Article  PubMed  CAS  Google Scholar 

  • Xu, G.L., Bestor, T.H., Bourc’his, D., Hsieh, C.L., Tommerup, N., Bugge, M., Hulten, M., Qu, X., Russo, J.J., and Viegas-Pequignot, E., 1999, Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 402:187–191.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

El-Maarri, O. (2003). DNA Methylation and Human Diseases. In: Roels, F., Baes, M., De Bie, S. (eds) Peroxisomal Disorders and Regulation of Genes. Advances in Experimental Medicine and Biology, vol 544. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9072-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9072-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4782-8

  • Online ISBN: 978-1-4419-9072-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics