Skip to main content

COMT Inhibition in the Treatment of Parkinson’S Disease: Neuroprotection and Future Perspectives

  • Conference paper
Frontiers in Clinical Neuroscience

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 541))

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects about 1 to 2% of the elderly population (aged > 65 years). It remains that from the clinical point of view, PD’s cardinal features are limited to four — tremor, rigidity, akinesia, and postural instability — and that customarily the unambiguous observation of at least two of the first three suffices to pose the clinical diagnosis of PD. Although the progression of PD is slow compared to other degenerative parkinsonian disorders, the annual rate of motor function decline is most rapid early in the course of the disease (during the first 4 to 9 years). This pattern of progression may be correlated with the underlying nigral pathology.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Guttman, J. Burkholder J, S.J. Kish, D. Hussey, A. Wilson, J. DaSitva, and S. Houle, [11C]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson’s disease: implications for the symptomatic threshold, Neurology 48, 1578–1583 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. A. Björ klund, and O. Lindvall, Dopamine-containing systems in the CNS, in: Handbook of chemical neuroanatomy. Classical transmitters in the CNS. Part, edited by A. Björklund, and T. Hökfelt (El-sevier, Amsterdam, 1984), pp. 55–122.

    Google Scholar 

  3. B. Scatton, T. Dennis, R. L’Heureux, J.C. Monfort, C. Duyckaerts, and F. Javoy-Agid, Degeneration of noradrenergic and serotonergic but not dopaminergic neurones in the lumbar spinal cord of parkinsonian patients, Brain Res. 380, 181–185 (1986).

    Article  PubMed  CAS  Google Scholar 

  4. CD. Marsden, Neuromelanin and Parkinson’s disease. J. Neural. Transm. 19, 121–141 (1983).

    CAS  Google Scholar 

  5. L.S. Forno, Pathology of Parkinson’s disease: the importance of the substantia nigra and Lewy bodies, in: Parkinson’s disease, edited by G M. Stern (The Johns Hopkins University Press, Baltimore, 1990), pp. 185–238.

    Google Scholar 

  6. O. Hornykiewicz, and S.J. Kish, Biochemical pathophysiology of Parkinson’s disease, in: Parkinson’s disease, edited by M. Yahr, and K.J. Bergmann Raven Press, New York, 1987), pp. 19–34.

    Google Scholar 

  7. K.O. Lloyd, L. Davidson, and O. Hornykiewicz, The neurochemistry of Parkinson’s disease: effect of Levodopa therapy, J. Pharmacol. Exp. Ther. 195, 453–464 (1975).

    PubMed  CAS  Google Scholar 

  8. T. Nagatsu, Changes of tyrosine hydroxylase in parkinsonian brains and in the brains of MPTP-treated mice, Adv. Neurol. 53, 207–214 (1990).

    PubMed  CAS  Google Scholar 

  9. X.-H. Zhong, J.W. Haycock, K. Shannak, Y. Robitaille, J. Fratkin, AH. Koeppen, O. Hornykiewicz, and S.J. Kish, Striatal dihydroxyphenylalanine decarboxylase and tyrosine hydroxylase protein in idiopathic Parkinson’s disease and dominantly inherited olivopontocerebellar atrophy, Mov. Disord. 10, 10–17 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. J.M. Wilson, A.I. Levey, A. Rajput, L. Ang, M. Guttman, K. Shannak, H.B. Niznik, O. Hornykiewicz, C. Pifl, and S.J. Kish, Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease, Neurology 47, 718–726 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. Y. Agid, F. Javoy-Agid, and M. Ruberg, Biochemistry of neurotransmitters in Parkinson’s disease, in: Movement Disorders 2, edited by CD. Marsden, and S. Fahn (Butterworths, London, 1987), pp. 166–230.

    Google Scholar 

  12. C.R. Gerfen, and C.J. Wilson, The basal ganglia, in: Handbook of chemical neuroanatomy. Integrated systems of the CNS, Part III, edited by L.W. Swanson, A. Björklund, and T. Hökfelt (El-sevier, New York, 1996), pp. 371–468.

    Google Scholar 

  13. M.R. DeLong, Primate models of movement disorders of basal ganglia origin, Trends Neurosci. 13, 281–285 (1990).

    Google Scholar 

  14. R.L. Albin, A.B. Young, and J.B. Penney, The functional anatomy of disorders of the basal ganglia, Trends Neurosci. 18, 63–64 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. M.J. Zigmond, E.D. Abercrombie, T.W. Berger, A.A. Grace, and E.M. Stricker, Compensations after lesions of the central dopaminergic neurons: some clinical and basic implications, Trends Neurosci. 13, 290–296 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. G.F. Wooten, Pharmacokinetics of levodopa, in: Movement disorders 2, edited by CD. Marsden, and S. Fahn (Butterworths, London, 1987), pp. 231–248.

    Google Scholar 

  17. U. Trendelenburg, The interaction of transport mechanisms and intracellular enzymes in metabolizing systems, J. Neural. Transm. 32, 3–18 (1990).

    CAS  Google Scholar 

  18. P.T. Männistö, and S. Kaakkola, Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors, Pharmacol. Rev. 51, 593–628 (1999).

    PubMed  Google Scholar 

  19. J.G. Nutt, Effect of COMT inhibition on the pharmacokinetics and pharmacodynamics of levodopa in parkinsonian patients, Neurology 55(suppl 4), S33–S37 (2000).

    PubMed  CAS  Google Scholar 

  20. V.Glover, Sandler M, Owen F, Dopamine is a monoamine oxidase B substrate in man. Nature 1977;265:80–81.

    Article  PubMed  CAS  Google Scholar 

  21. H.C. Guldberg, and C.A. Marsden, Catechol-O-methyl transferase: pharmacological aspects and physiological role, Pharmacol. Rev. 27, 135–206 (1975).

    PubMed  CAS  Google Scholar 

  22. T. Karhunen, C. Tilgmann, I. Ulmanen, and P. Panula, Catechol-O-methyltransferase (COMT) in rat brain: immunoelectron microscopic study with an antiserum against rat recombinant COMT protein, Neurosci. Lett. 187, 57–60 (1995).

    Article  PubMed  CAS  Google Scholar 

  23. A. Kastner, P. Anglade, C. Bounaix, P. Damier, F. Javoy-Agid, N. Bromet, and Y. Agid, Immunohistochemical study of catechol-O-methyltransferase in the human mesostriatal system, Neuroscience 62, 449–457 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. M.H. Grossman, B.S. Emanuel, and M.L. Budarf, Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1-q11.2, Genomics 12, 822–825 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. J. Tenhunen, and I. Ulmanen, Production of rat soluble and membrane-bound catechol-O-methyltransferase forms from bifunctional mRNAs, Biochem. J. 296, 595–600 (1993).

    PubMed  CAS  Google Scholar 

  26. B. Boudikova, C. Szumlanski, B. Maidak, and R. Weinshilboum, Human liver catechol-O-methyltransferase pharmacogenetics, Clin. Pharmacol. Ther. 48, 381–389 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. H. Kunugi, S. Nanko, A. Ueki, E. Otsuka, M. Hattori, F. Hoda, H.P. Vallada, M.J. Arranz, and D.A. Collier, High and low activity alleles of catechol-O-methyltransferase gene: ethnic difference and possible association with Parkinson’s disease, Neurosci. Lett. 221, 202–204 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. A. Yoritaka, N. Hattori, H. Yoshino, and Y. Mizuno, Catechol-O-methyltransferase genotype and susceptibility to Parkinson’s disease in Japan, J. Neural. Transm. 104, 1313–1317 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. E.L. Cavalieri, D.E. Stack, P.D. Devanesan, R. Todorovic, I. Dwivedy, S. Higginbotham, S.L. Johansson, K.D. Patil, M.L. Gross, J.K. Gooden, R. Ramanathan, R.L. Cerny, and E.G. Rogaen, Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators, Proc. Natl. Acad. Sci. USA 94, 10937–10942 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. S. Fahn, Adverse effects of levodopa in Parkinson’s disease, in: Handbook of experimental pharmacology, vol. 8, edited by D.B. Calne (Springer-Verlag, Berlin, 1989), pp. 386–409.

    Google Scholar 

  31. V.S. Kostić, S. Przedborski, E. Flaster, and N. Šternić, Early development of levodopa-induced dy-skinesias and response fluctuations in young-onset Parkinson’s disease, Neurology 41, 202–205 (1991).

    Article  PubMed  Google Scholar 

  32. V.S. Kostic, J. Marinkovic, M. Svetel, E. Stefanova, and S. Przedborski, The effect of stage of Parkinson’s disease at the onset of levodopa therapy on development of motor complications, Eur. J. Neurol. 9, 9–14 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. J.G. Nutt, J.H. Carter, E.S. Lea, and G.J.Sexton, Evolution of the response to levodopa during the first 4 years of therapy, Ann. Neurology 51, 686–693 (2000).

    Article  CAS  Google Scholar 

  34. M.M. Mouradian, J.L. Juncos, G. Fabbrini, and T.N. Chase, Motor fluctuations in Parkinson’s disease: pathogenetic and therapeutic studies, Ann. Neurol. 22, 475–479 (1987).

    Article  PubMed  CAS  Google Scholar 

  35. W. Schultz, Behavior-related activity of primate dopamine neurons, Rev. Neurol. (Paris) 150, 634–639 (1994).

    CAS  Google Scholar 

  36. T.N. Chase, and J.D. Oh, Striatal mechanisms and pathogenesis of parkinsonian signs and motor complications, Ann. Neurol. 47, S122–S129 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. S.M. Papa, T.M. Engber, A.M. Kask, and T.N. Chase, Motor fluctuations in levodopa treated parkinsonian rats: Relation to lesion extent and treatment duration, Brain Res. 662, 69–74 (1994).

    Article  PubMed  CAS  Google Scholar 

  38. W.C. Koller, Levodopa in the treatment of Parkinson’s disease, Neurology 55(suppl 4), S2–S7 (2000).

    PubMed  CAS  Google Scholar 

  39. C. Colosimo, M. Merello, A.J. Hughes, K. Sieradzan, and A.J. Lees, Motor response to acute dopaminergic challenge with apomorphine and levodopa in Parkinson’s disease: implications for the pathogenesis of the on-off phenomenon, J. Neurol. Neurosurg. Psychiatry 60, 634–637 (1996).

    Article  PubMed  CAS  Google Scholar 

  40. A.E. Lang, and A.M. Lozano, Parkinson’s disease — Second of two parts, N. Engl. J. Med. 339, 1130–1143 (1998).

    Article  PubMed  CAS  Google Scholar 

  41. T.N. Chase, The significance of continuous dopaminergic stimulation in the treatment of Parkinson’s disease, Drugs 55(suppl 1), 1–9 (1998).

    Article  PubMed  Google Scholar 

  42. J. Dingemanse, Issues important for rational COMT inhibition, Neurology 55(suppl 4), S24–S27 (2000).

    PubMed  CAS  Google Scholar 

  43. M. Huotari, R. Gainetdinov, and P.T. Männistö, Microdialysis studies on the action of tolcapone on pharmacologically-elevated extracellular dopamine levels in conscious rats, Pharmacol. Toxicol. 85, 233–238 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. R. Ceravolo, P. Piccini, D.L. Bailey, K.M. Jorga, H. Bryson, and D.J. Brooks, 18F-Dopa PET evidence that tolcapone acts as a central COMT inhibitor in Parkinson’s disease, Synapse 43, 201–207 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. A. Napolitano, G. Bellini, E. Borroni, G. Zurcher, and U. Bonuccelli, Effects of peripheral and central catechol-O-methyltransferase inhibition on striatal ectracellular levels of dopamine: a microdialysis study in freely moveing rats, Parkinsonism. Relat. Dis. 9, 145–150 (2003).

    Article  Google Scholar 

  46. W. Kuhn, D. Woitalla, M. Gerlach, H. Russ, and T. Muller, Tolcapone and neurotoxicity in Parkinson’s disease, Lancet 352, 1313–1314 (1998).

    Article  PubMed  CAS  Google Scholar 

  47. K.M. Jorga, COMT inhibitors: pharmacokinetic and pharmacodynamic comparisons, Clin. Neuropharmacol. 21(suppl 1), S9–S16 (1998).

    Google Scholar 

  48. M.C. Kurth, C.H. Adler, M.S. Hilaire, C. Singer, C. Waters, P. LeWitt, D.A. Chernik, E.E. Dorflinger, and K. Yoo, Tolcapone improves motor function and reduces levodopa requirement in patients with Parkinson’s disease experiencing motor fluctuations: a multicenter, double-blind, randomized, placebo-controlled trial, Neurology 48, 81–87 (1997).

    Article  PubMed  CAS  Google Scholar 

  49. A.H. Rajput, W. Martin, M.G. Saint-Hilaire, E. Dorflinger, and S. Pedder, Tolcapone improves motor function in parkinsonian patients with the “wearing-off” phenomenon: a double-blind, placebocontrolled, multicenter trial, Neurology 49, 1066–1071 (1997).

    Article  PubMed  CAS  Google Scholar 

  50. U.K. Rinne, J.P. Larsen, A. Siden, and J. Worm-Petersen, Entacapone enhances the response to levodopa in parkinsonian patients with motor fluctuations, Neurology 51, 1309–1314 (1998).

    Article  PubMed  CAS  Google Scholar 

  51. Group of authors, COMT inhibitors, Mov. Disord. 17(suppl 4), S45–S51 (2002).

    Article  Google Scholar 

  52. F. Assal, L. Spahr, A. Hadengue, L. Rubbici-Brandt, P.R. Burkhardt, Tolcapone and fulminant hepatitis, Lancel 352, 958 (1998).

    Article  CAS  Google Scholar 

  53. E. Nissinen, P. Kaheinen, K. Pentillä, J. Kaivola, I.B. Linden, Entacapone, a novel catechol-O-methyl transferase inhibitor of Parkinson’s disease, does not impair mitochondrial energy production, Eur. J. Pharmacol. 340, 287–294 (1997).

    Article  PubMed  CAS  Google Scholar 

  54. K. Haasio, K. Lounatmaa, and A. Sukura, Entcapone does nor induce conformational changes in liver mitochondria or skeletal muscle in vivo, Exp. Toxic. Pathol. 54, 9–14 (2002).

    Article  CAS  Google Scholar 

  55. C.W. Olanow, The role of dopamine agonists in the treatment of early Parkinson’s disease, Neurology 58(suppl 1), S33–S41 (2002).

    Article  PubMed  CAS  Google Scholar 

  56. W. Olanow, and J.A. Obeso, Pulsatile stimulation of dopamine receptors and levodopa-induced motor complications in Parkinson’s disease: implications for the early use of COMT inhibitors, Neurology 55(Suppl 4), S72–S77 (2000).

    PubMed  CAS  Google Scholar 

  57. P. Jenner, G. Al-Bargouthy, L. Smith, M. Kuoppamaki, M. Jackson, S. Rose, and W. Olanow, Initiation of entacapone with L-dopa further improves antiparkinsonian activity and avoids dyskinesia in the MPTP primate model of Parkinson’s disease, Neurology 58(Suppl 3), A374 (2002).

    Google Scholar 

  58. V.S. Kostic, S.R. Filipovic, D. Lecic, D. Momcilovic, D. Sokic, and N. Sternic, Effect of age at onset on frequency of depression in Parkinson’s disease, J. Neurol. Neurosurg. Psychiatry 57, 1265–1267 (1994).

    Article  PubMed  CAS  Google Scholar 

  59. V.S. Kostić, B.M. Djurićić, N. Šternić, Lj. Bumbaširević, M. Nikolić, and B.B. Mršulja, Depression and Parkinson’s disease: possible role of serotonergic mechanisms, J. Neurol. 234, 94–96 (1987).

    Article  PubMed  Google Scholar 

  60. E. Melamed, Neurobehavioral abnormalities in Parkinson’s disease, in: Movement disorders: neurologic principles and practice, edited by R.L. Watts, and W.C. Koller (McGraw-Hill, New York, 1997) pp. 257–262.

    Google Scholar 

  61. S.A. Cole, J.L. Woodard, J.L. Juncos, J.L. Kogos, E.A. Youngstrom, and R.L. Watts, Depression and disability in Parkinson’s disease, J. Neuropsychiatry Clin. Neurosci. 8, 20–25 (1996).

    PubMed  CAS  Google Scholar 

  62. S.E. Starkstein, H.S. Mayberg, R. Leiguarda, T.J. Preziosi, and R.G. Robinson, A prospective longitudinal study of depression, cognitive decline, and physical impairments in patients with Parkinson’s disease, J. Neurol. Neurosurg. Psychiatry. 55, 377–382 (1992).

    Article  PubMed  CAS  Google Scholar 

  63. T. Tom, and J.L. Cummings, Depression in Parkinson’s disease: pharmacological characteristics and treatment, Drugs & Aging 12, 55–74 (1998).

    CAS  Google Scholar 

  64. K. Marder, M.X. Tang, L. Cote, Y. Stern, and R. Mayeux, The frequency and associated risk factors for dementia in patients with Parkinson’s disease, Arch. Neurol. 52, 695–701 (1995).

    Article  PubMed  CAS  Google Scholar 

  65. K.H. Karlsen, J.P. Larsen, E. Tandberg, and J.G. Maeland, Influence of clinical and demographic variables on quality of life in patients with Parkinson’s disease, J. Neurol. Neurosurg. Psychiatry. 66, 431–435 (1999).

    Article  PubMed  CAS  Google Scholar 

  66. A.-M. Kuopio, R.J. Martilla, H. Helenius, M. Toivonen, and U.K. Rinne, The quality of life in Parkinson’s disease, Mov. Disord. 15, 216–223 (2000).

    Article  PubMed  CAS  Google Scholar 

  67. T. Bottiglieri, and K. Hyland, S-adenosyl-methionine levels in psychiatric and neurologic disorders, Acta Neurol Scand 154(suppl), 19–26 (1994).

    Article  Google Scholar 

  68. C.W. Fetrow, and J.R. Avila, Efficacy of the dietary supplement S-adenosyl-L-methionine, Ann. Pharmacother. 35, 1414–1425 (2001).

    Article  PubMed  CAS  Google Scholar 

  69. G.M. Bressa, S-adenosyl-L-methionine as antidepressant: a meta analysis of clinical studies, Acta Neurol. Scand. 154(suppl 1), 7–14 (1994).

    Article  CAS  Google Scholar 

  70. M. Da Prada, J. Borgulya, A. Napolitano, and G. Zucher, Improved therapy for Parkinson’s disease with tolcapone: a central and peripheral COMT inhibitor with an S-adenosylmethionine sparing effect, Clin. Neuropharmacol. 17(suppl 3), 26–27 (1994).

    Article  Google Scholar 

  71. R.J. Wurtman, S. Rose, S. Matthyse, J. Stephenson, and R. Baldessarini, L-dihydroxyphenilalanine: effect on S-adenosyl-methionine in the brain, Science 169, 395–397 (1970).

    Article  PubMed  CAS  Google Scholar 

  72. R. Surtees, K. Hyland, L-dihydroxyphenilalanine (levodopa) lowers central nervous system Sadenosylmethionine concentrations in humans, J. Neurol. Neurosurg. Psychiatry 53, 569–572 (1990).

    Article  PubMed  CAS  Google Scholar 

  73. A. Stock, S. Clarke, C. Clarke, and J. Stock, N-terminal methylation of proteins: structure, function and specificity, FEBS Lett. 220, 8–14 (1987).

    Article  PubMed  CAS  Google Scholar 

  74. I. Bellido, A. Gomez-Luque, A. Plaza, F. Ruiz, P. Ortiz, and F. Sanchez de la Cuesta, S-Adenosyl-L-methionine prevents 5-HT(l°) receptors up-regulation induced by acute imipramine in the frontal cortex of the rat, Neurosci. Lett. 321, 110–114 (2002).

    Article  PubMed  CAS  Google Scholar 

  75. A. Di Rocco, J.D. Rogers, R. Brown, P. Werner, and T. Bottiglieri, S-Adenosyl-methionine improves depression in patients with Parkinson’s disease in an open-label clinical trial, Mov. Disord. 15, 1225–1229 (2000).

    Article  PubMed  Google Scholar 

  76. J.L. Moreau, J. Borgulya, F. Jenck, and J.R. Martin, Tolcapone: a potential new antidepressant detected in a novel animal model of depression, Behav. Pharmacol. 5, 344–350 (1994).

    Article  PubMed  CAS  Google Scholar 

  77. M. Fava, J.F. Rosenbaum, A.R. Kolsky, J.E. Alpert, A.A. Nierenberg, M. Spillmann, P. Rensshaw, T. Bottiglieri, G. Moroz, and G. Magni, Open study of the catechol-O-methyltransferase inhibitor tolacapone in major depressive disorder, J. Clin. Psychopharmacol. 19, 329–335 (1999).

    Article  PubMed  CAS  Google Scholar 

  78. S. Przedborski, and V. Jackson-Lewis, Experimental developments in movement disorders: update on proposed free radical mechanisms, Curr. Opm. Neurol. 11, 335–339 (1998).

    Article  CAS  Google Scholar 

  79. H.M. Swartz, T. Sarna, and L. Zecca, Modulation by neuromelanin of the availability and reactivity of metal ions, Ann. Neurol. 32 (Suppl.), S69–S75 (1992).

    Article  PubMed  CAS  Google Scholar 

  80. Y. Agid, E. Ahlskog, A. Albanese A, D. Calne, T. Chase, J. De Yebenes, S. Factor, S. Fahn, O. Gershanik, C. Goetz, W. Koller, M. Kurth, A. Lang, A. Lees, CD. Marsden, E. Melamed, P.P. Michel, Y. Mizuno, J. Obeso, W. Oertel, W. Olanow, W. Poewe, Pollak P, and E. Tolosa, Levodopa in the treatment of Parkinson’s disease: a consensus meeting, Mov. Disord. 14, 911–913 (1999).

    Google Scholar 

  81. M. Gerlach, A.Y. Xiao, W. Kuhn, R. Lehnfeld, P. Waldmeier, K.H. Sontag, and P. Riederer, The central catechol-O-methyltransferase inhibitor tolcapone increases striatal hydroxyl radical production in L-dopa/carbidopa treated rats, J. Neural. Transm. 108, 189–204 (2001).

    Article  PubMed  CAS  Google Scholar 

  82. L. Lyras, B.-Y. Zeng, G. McKenzie, R.K.B. Pearce, B. Halliwell, and P. Jenner, Chronic high dose L-dopa alone or in combination with the COMT inhibitor entacapone does not increase oxidative damage or impair the function of the nigro-striatal pathway in normal cynomologus monkeys, J. Neural. Transm. 109, 53–67 (2002).

    Article  PubMed  CAS  Google Scholar 

  83. D. Offen, H. Panet, R. Galili-Mosberg, E. Melamed, Catechol-O-methyltransferase decreases levodopa toxicity in vitro, Clin. Neuropharmacol. 24, 27–30 (2001).

    Article  CAS  Google Scholar 

  84. E. Hansson, Enzymatic activities of monoamine oxidase, catechol-O-methyltransferase and gamma-aminobutyric acid transaminase in primary astroglial cultures and adult rat brain from different brain regions, Neurochem. Res. 9, 45–57 (1984).

    Article  PubMed  CAS  Google Scholar 

  85. A. Storch, H. Blessing, M. Bareiss, S. Jankowski, Z.D. Ling, P. Carvey, and J. Schwarz, Catechol-O-methyltransferase inhibition attenuates levodopa toxicity in mesencephalic dopamine neurons, Mol. Pharm. 57, 589–594 (2002).

    Google Scholar 

  86. H. Blessing, M. Bareiss, H. Zettlmeisl, J. Schwarz, and A. Storch, Catechol-O-methyltransferase inhibition protects against 3,4-dihydroxyphenylalanine (DOPA) toxicity in primary mesencephalic cultures: new insights into levodopa toxicity, Neurochem. Int. 42, 139–151 (2003).

    Article  PubMed  CAS  Google Scholar 

  87. S. Seshadri, A. Beiser, J, Selhub, P.F. Jacques, I.H. Rosenberg, R.B. D’A gostino, P.W.F. Wilson, and P.A. Wolf, Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease, N. Engl. J. Med. 345, 476–483 (2002).

    Article  Google Scholar 

  88. P. Allain, A. Le Bouil, E. Cordillet, L, Le Quay, H, Bagheri, and J.L. Montastruc, Sulfate and cysteine levels in the plasma of patients with Parkinson’s disease, Neurotoxicol. 16, 527–529 (1995).

    Google Scholar 

  89. W. Kuhn, R. Roebroek, H. Blom, D. van Oppenraaij, and T. Muller, Hyperhomocysteinemia in Parkinson’s disease, J. Neurol. 245, 811–812 (1998)

    Article  PubMed  CAS  Google Scholar 

  90. K. Yasui, H. Kowa, K, Nakaso, T. Takeshima, and K. Nakashima, Plasma homocysteine and MTHFR C677T genotype on levodopa-treated patients with Parkinson’s disease, Neurology 55, 437–440 (2000).

    Article  PubMed  CAS  Google Scholar 

  91. F. Blandini, R. Fancellu, E. Mortignoni, A. Mangiagalli, C. Pacchetti, A. Samuele, and G. Nappi, Plasma homocysteine and L-dopa metabolism in patients with Parkinson disease, Clin. Chem. 47, 1102–1104 (2001).

    PubMed  CAS  Google Scholar 

  92. T. Muller, D. Woitalla, B. Hauptmann, B. Fowler, and W. Kuhn, Decrease in methionine and Sadenosylmethionine and increase of homocysteine in treated patients with Parkinson’s disease, Neurosci. Lett. 308, 54–56 (2001).

    Article  PubMed  CAS  Google Scholar 

  93. T. Muller, D. Woitalla, B. Fowler, and W. Kuhn, 3-OMD and homocysteine plasma levels in parkinsonian patients. J. Neural. Transm. 109, 175–179 (2002).

    Article  PubMed  CAS  Google Scholar 

  94. J.D. Rogers, A. Sanchez-Saffon, A.B. Frol, and R. Diaz-Arastia, Elevated plasma homocysteine levels in patients with levodopa: association with vascular disease, Arch. Neurol. 60, 59–64 (2003).

    Article  PubMed  Google Scholar 

  95. X.X. Liu, K. Wilson, and CG. Charlton, Effects of L-dopa treatment on methylation in mouse brain: implications for the side effects of L-dopa. Life Sci. 66, 2277–2288 (2000).

    Article  PubMed  CAS  Google Scholar 

  96. P. Frosst, H.J. Blom, R. Milos, P. Goyette, C.A. Sheppard, R.G. Matthews, G.J. Boers, M. Den Heujer, L.A. Kluijtmans, and L.P. van den Heuvel, A candidate geneticd risk factor for vascular disease: a common mutation in methylentetrahydrofolate reductase, Nat. Genet 10, 111–113 (1995).

    Article  PubMed  CAS  Google Scholar 

  97. W. Kuhn, T. Hummel, D. Woitalla, and T. Muller, Plasma homocysteine and MTHFR C667T genotype in levodopa-treated patients with PD (letter), Neurology 56, 281 (2001).

    Article  PubMed  CAS  Google Scholar 

  98. D.S. Wald, M. Law, and J.K. Morris. Homocysteine and cardiovascular disease evidence on causality from a meta-analysis, Br. Med. J. 325, 1202–1206 (2002).

    Article  Google Scholar 

  99. S.E. Vermeer, T. Den Heijer, P.J. Koudstaal, M. Oudkerk, A. Hofman, and M.M. Breteler, Incidence and risk factors of silent brain infarcts in the population-based Rotterdam scan study, Stroke 34, 137–146 (2003).

    Google Scholar 

  100. T.G. Deloughery, Hyperhomocysteinemia in ischemic stroke, Sem. Cerebrovasc. Dis. Stroke 2, 111–119 (2002).

    Article  Google Scholar 

  101. G. Blundell, B.G. Jones, F.A. Rose, and N. Tudball, Homocysteine mediated endothelial cell toxicity and its amelioration, Atherosclerosis 122, 163–172 (1996).

    Article  PubMed  CAS  Google Scholar 

  102. I.I. Kruman, C. Culmsee, S.L. Chan, Y. Kruman, Z. Guo, L. Penix, and M.P. Mattson, Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to ex-citotoxicity, J. Neurosci. 20, 6920–6926 (2000).

    PubMed  CAS  Google Scholar 

  103. I.I. Kruman, T.S. Kumaravel, A. Lohani, W.A. Pedersen, R.G. Cutler, Y. Kruman, N. Haughey, J. Lee, M. Evans, and M.P. Mattson, Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental model of Alzheimer’s disease, J. Neurosci. 22, 1752–1762 (2002).

    PubMed  CAS  Google Scholar 

  104. Q. Shi, J. Savage, S. Hufesein, L. Rauser, E. Grajkowski, P. Ernsberger, J. Wroblewski, J. Nadeau, and B.L. Roth, L-homocysteine sulfinic acid and other acidic homocysteine derivatives are potent and selective metabotropic glutamate receptor agonists, J. Pharmacol. Exp. Ther. 21, 2344–2348 (2003).

    Google Scholar 

  105. T.J. Montine, V. Amarnath, M.J. Picklo, K.R. Sidell, J. Zhang, and D.G. Graham, Dopamine mercapturate can augment dopaminergic neurodegeneration, Drugs Metabol. Rev. 32, 363–376 (2000).

    Article  CAS  Google Scholar 

  106. W. Duan, B. Ladenheim, R.G. Cutler, I.I. Kruman, J.L. Cadet, and M.P. Mattson, Diatery folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease, J. Neurosci. 80, 101–110 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Kostić, V.S. (2004). COMT Inhibition in the Treatment of Parkinson’S Disease: Neuroprotection and Future Perspectives. In: Vécsei, L. (eds) Frontiers in Clinical Neuroscience. Advances in Experimental Medicine and Biology, vol 541. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8969-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8969-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4740-8

  • Online ISBN: 978-1-4419-8969-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics