Skip to main content

Particle Simulation of the Boltzmann Equation

  • Chapter
The Mathematical Theory of Dilute Gases

Part of the book series: Applied Mathematical Sciences ((AMS,volume 106))

  • 1251 Accesses

Abstract

Validity analysis, existence and uniqueness theorems, and qualitative results on the behavior of the solutions are certainly central to the understanding of rarefied gases. For real physical situations, however, like the flow pattern around an object that moves inside a rarefied gas, we need methods to actually calculate or approximate solutions of the Boltzmann equation. For most situations, it is hopeless to even look for explicit solutions of the Boltzmann equation. On the other hand, the five-dimensional integral in the collision operator makes numerical approximations a difficult topic. Specifically, recall that

$$ Q\left( {f,f} \right)\, = \,\int_{\Re ^3 } {\int_{S^2 } {\left| {n\, \cdot \,\left( {{\rm \xi }\, - \,{\rm \xi }_{\rm *} } \right)} \right|\,\left\{ {f'\,f'_* \, - \,f\,f_* } \right\}dnd{\rm \xi }_{\rm *.} } } $$

Suppose we want to approximate the collision integral by a quadrature formula that requires the evaluation of the integrand at a number of points. Obviously, the integrand must decay fast enough at infinity to give us reasonable accuracy with a finite number of evaluation points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Babovsky, “A convergence proof for Nanbu’s Boltzmann simulation scheme,” European J. Mech. B: Fluids 8(1), 41–55 (1989).

    MathSciNet  MATH  Google Scholar 

  2. H. Babovsky, “Time averages of simulation schemes as approximations to stationary kinetic equations,” Eur. J. Mech. B: Fluids 11, 199–212 (1992).

    MathSciNet  ADS  MATH  Google Scholar 

  3. H. Babovsky and R. Illner, “A convergence proof for Nanbu’s simulation method for the full Boltzmann equation,” SI AM J. Num. Anal. 26(1), 45–65 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M. Backer, personal communication (1990).

    Google Scholar 

  5. P. Billingsley, Convergence of probability measures, Wiley, N.Y. (1968).

    MATH  Google Scholar 

  6. G. A. Bird, Molecular gas dynamics, Clarendon Press, Oxford (1976).

    Google Scholar 

  7. S. V. Bogomolov, “Convergence of the total-approximation method for the Boltzmann equation,” U.S.S.R. Comput. Math. Phys. 28 (1), 79–84 (1988).

    Google Scholar 

  8. C. Greengard and L. Reyna, “Conservation of expected momentum and energy in Monte Carlo particle simulation,” preprint, IBM Research Center, Yorktown Heights, NY (1992).

    Google Scholar 

  9. R. Illner and H. Neunzert, “On simulation methods for the Boltzmann equation,” Transport Theory Stat. Phys. 16 (2&3), 141–154 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. K. Koura, “Null-collision technique in the direct-simulation Monte Carlo method,” Phys. Fluids 29 (11), 3509–3511 (1986).

    Article  ADS  Google Scholar 

  11. K. Nanbu, “Interrelations between various direct simulation methods for solving the Boltzmann equation,” J. Phys. Soc. Japan 52 (10), 3382–3388 (1983).

    Google Scholar 

  12. H. Ploss, “On simulation methods for solving the Boltzmann equation,” Computing 38, 101–115 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Pulvirenti, W. Wagner, and M. B. Zavelani, “Convergence of particle schemes for the Boltzmann equation,” preprint (1993).

    Google Scholar 

  14. W. Wagner, “A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation,” J. Stat. Phys 66 (3&4), 1011–1044 (1992).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cercignani, C., Illner, R., Pulvirenti, M. (1994). Particle Simulation of the Boltzmann Equation. In: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol 106. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8524-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8524-8_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6425-5

  • Online ISBN: 978-1-4419-8524-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics