Skip to main content

Existence Results for Initial-Boundary and Boundary Value Problems

  • Chapter
The Mathematical Theory of Dilute Gases

Part of the book series: Applied Mathematical Sciences ((AMS,volume 106))

  • 1243 Accesses

Abstract

The global existence of a weak solution for the Cauchy problem for the Boltzmann equation, first obtained by DiPerna and Lions 13, was presented in . The proof applies to non-negative data with finite energy and entropy. In this chapter, we shall first deal with the initial boundary value problem, which arises when we consider the time evolution of a rarefied gas in a vessel Ω whose boundaries are kept at constant temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Arkeryd, “On the strong L l trend to equilibrium for the Boltzmann equation,” Studies in Appl. Math. 87, 283–288 (1992).

    MathSciNet  MATH  Google Scholar 

  2. L. Arkeryd and C. Cercignani, “A global existence theorem for the initial boundary value problem for the Boltzmann equation when the boundaries are not isothermal” Arch. Rat. Mech. Anal. 125, 271–288 (1993).

    Article  MathSciNet  Google Scholar 

  3. L. Arkeryd and C. Cercignani, “On the convergence of solutions of the Enskog equation to solutions of the Boltzmann equation,” Commun, in Partial Differential Equations 14, 1071–1089 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Arkeryd, C. Cercignani, and R. Illner, “Measure solutions of the steady Boltzmann equation in a slab,” Commun Math Phys 142, 285–296 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. R. Beals and V. Protopopescu, “Abstract time-dependent transport equations,” J. Math. Anal. Appl. 121, 370–405 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Boltzmann, “Ûber die Aufstellung und Integration der Gleichungen, welche die Molekularbewegungen in Gasen bestimmen,” Sitzungsberichte der Akademie der Wissenschaften Wien 74, 503–552 (1876).

    Google Scholar 

  7. M. Cannone and C. Cercignani, “A trace theorem in kinetic theory,” Appl. Math. Lett. 4, 63–67 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Cercignani, “Equilibrium states and trend to equilibrium in a gas according to the Boltzmann equation,” Rend. Mat. Appl. 10, 77–95 (1990).

    MathSciNet  MATH  Google Scholar 

  9. C. Cercignan, “On the initial-boundary value problem for the Boltzmann equation,” Arch. Rational Mech. Anal. 116:307–315 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  10. C. Cercignani, “Stokes paradox in kinetic theory”. Phys. Fluids 11, 303 (1967).

    Article  MathSciNet  ADS  Google Scholar 

  11. L. Desvillettes, “Convergence to equilibrium in large time for Boltzmann and BGK equations,” Arch. Rat. Mech. Analysis 110, 73–91 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. R. Di Perna and P.L. Lions, “Global solutions of Boltzmann’s equation and the entropy inequality,” Arch. Rational Mech. Anal 114, 47–55 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. R. DiPerna and P. L. Lions , “On the Cauchy problem for Boltzmann equations,” Ann. of Math. 130, 321–366 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. P. Guiraud , “An H-theorem for a gas of rigid spheres in a bounded domain,” in Théories cinétigues classiques et rélativistes, G. Pichon, ed., 29–58, CNRS, Paris (1975).

    Google Scholar 

  15. K. Hamdache, “Initial boundary value problems for Boltzmann equation. Global existence of weak solutions,” Arch. Rat. Mech. Analysis 119, 309–353 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S. Kawashima, “Global solutions to the initial-boundary value problems for the discrete Boltzmann equation,” Nonlinear Analysis, Methods and Applications 17, 577–597 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  17. P. L. Lions, “Compactness in Boltzmann’s equation via Fourier integral operators and applications. I,” Cahiers de Mathématiques de la décision no. 9301, CEREMADE (1993).

    Google Scholar 

  18. N. B. Maslova, “Existence and uniqueness theorems for the Boltzmann equation,” chapter 11 of Dynamical Systems II, Ya. G. Sina, ed., Springer, Berlin (1978).

    Google Scholar 

  19. N. B. Maslova, “The solvability of stationary problems for Boltzmann’s equation at large Knudsen numbers,” U.S.S.R Comput. Maths. Math. Phys., 17, 194–204 (1978).

    Article  MATH  Google Scholar 

  20. Y. Shizuta and K. Asano, “Global solutions of the Boltzmann equation in a bounded convex domain,” Proc. Japan Acad. 53A, 3–5 (1977).

    Article  MathSciNet  Google Scholar 

  21. S. Ukai, “Solutions of the Boltzmann equation,” Pattern and Waves Qualitative Analysis of Nonlinear Differential Equations, 37–96 (1986).

    Chapter  Google Scholar 

  22. S. Ukai, The transport equation (in Japanese). Sangyo Toshio, Tokyo (1976).

    Google Scholar 

  23. S. Ukai and K. Asano, “On the existence and stability of stationary solutions of the Boltzmann equation for a gas flow past an obstacle,” Research Notes in Mathematics 60, 350–364 (1982).

    MathSciNet  Google Scholar 

  24. S. Ukai, and K. Asano, “On the initial boundary value problem of the linearized Boltzmann equation in an exterior domain,” Proc. Japan Acad. 56, 12–17 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Ukai and K. Asano “Steady solutions of the Boltzmann equation for a gas flow past an obstacle. I. Existence,” Arch. Rational Mech. Anal. 84, 249–291 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. S. Ukai, and K. Asano “Steady solutions of the Boltzmann equation for a gas flow past an obstacle. II. Stability,” Publ. RIMS, Kyoto Univ. 22, 1035–1062 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Voigt “Functional analytic treatment of the initial boundary value problem for collisionless gases,” Habilitationsschrift, Univ, München (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cercignani, C., Illner, R., Pulvirenti, M. (1994). Existence Results for Initial-Boundary and Boundary Value Problems. In: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol 106. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8524-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8524-8_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6425-5

  • Online ISBN: 978-1-4419-8524-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics