Skip to main content

The Design and Optimization of the PCR

  • Chapter
PCR Technology

Abstract

In the few years since its introduction,1,2,3 the polymerase chain reaction has already become a widespread research technique. Like the PCR itself, the numbers of its practitioners have been accumulating exponentially and will probably continue to do so in the near future as the method finds wider applications in fields other than molecular biology. This popularity of the PCR is primarily due to its apparent simplicity and high probability of success. Reduced to its most basic terms, PCR merely involves combining a DNA sample with oligonucleotide primers, deoxynucleotide triphosphates, and the thermostable Taq DNA polymerase in a suitable buffer, then repetitively heating and cooling the mixture for several hours until the desired amount of amplification is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., and Arnheim, N. (1985) Science 37:170–172.

    Google Scholar 

  2. Mullis, K.B., Faloona, F.A., Scharf, S.J., Saiki, R.K., Horn, G.T., and Erlich, H.A. (1986) Cold Spring Harbor Symp. Quant. Biol. 51:263–273.

    Article  CAS  Google Scholar 

  3. Faloona, F., and Mullis, K. (1987) Meth. Enzymol.155:335–350.

    Google Scholar 

  4. Scharf, S.J., Horn, G.T., and Erlich, H.A. (1986) Science 233:1076–1078.

    Article  CAS  Google Scholar 

  5. Stoflet, E.S., Koeberl, D.D., Sarkar, G., and Sommer, S.S. (1988) Science 239:491–494.

    Article  CAS  Google Scholar 

  6. Watson, B., personal communication.

    Google Scholar 

  7. Clark, J.M. (1988) Nucl. Acids Res. 16:9677–9686.

    Article  CAS  Google Scholar 

  8. Denney, D., personal communication.

    Google Scholar 

  9. Innis, M.A., Myambo, K.B., Gelfand, D.H., and Brow, M.A. (1988) Proc. Natl. Acad. Sci. USA 85:9436–9440.

    Article  CAS  Google Scholar 

  10. McCabe, P., personal communication.

    Google Scholar 

  11. Petruska, J., Goodman, M.F., Boosalis, M.S., Sowers, L.C., Cheong, C., and Tinoco, I. (1988) Proc. Natl. Acad. Sci. USA 85:6252–6256.

    Article  CAS  Google Scholar 

  12. Kim, H.S., and Smithies, O. (1988) Nucl. Acids Res. 16:8887–8903.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1989 Stockton Press

About this chapter

Cite this chapter

Saiki, R.K. (1989). The Design and Optimization of the PCR. In: Erlich, H.A. (eds) PCR Technology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-20235-5_1

Download citation

Publish with us

Policies and ethics