Skip to main content

Chemical and frost resistance of hardened cement paste

  • Chapter
Portland Cement Paste and Concrete

Abstract

Hardened cement paste may be attacked either by a process of dissolution or by chemical transformation or by both at the same time. The intensity of the attack depends on the specific properties of the aggressive agent, its concentration, the presence of other ions in the solution, etc. Ambient conditions such as temperature and pressure, as well as the length of time and the nature of the contact (i.e. continuous or periodic) between the paste and the aggressive agent, also affect the intensity of the attack. Also, regardless of the specific nature of the agent, the intensity of the attack is determined to a considerable extent by the porosity of the paste. In a dense paste the attack is essentially limited to the surface proceeding with time to the inside. A porous paste, on the other hand, allows the aggressive solutions to penetrate it, and the attack takes place throughout the mass. Such an attack is, therefore, more intensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Powers, T. C., ‘Structure and Physical Properties of Hardened Portland Cement Paste’, J. Am. Ceram. Soc., 41, No. 1, 1–6 (1958).

    Article  Google Scholar 

  2. Powers, T. C., Copeland, L. E., Hayes, J. C., and Mann, H. M., ‘Permeability of Portland Cement Paste’, Proc. Am. Concr. Inst., 51, No. 3, 285–298 (1954).

    Google Scholar 

  3. Ludwig, N. C. and Pence, S. A., ‘Properties of Portland Cement Pastes Cured at Elevated Temperatures and Pressures’, Proc. Am. Concr. Inst., 52, No. 6, 673–687 (1956).

    Google Scholar 

  4. Biczok, I., Concrete-Corrosion Concrete Protection, Akedemiai Kiado, Budapest, 151–158 (1972).

    Google Scholar 

  5. Gardner, W., Chemical Synonyms and Trade Names, The Technical Press, London, 251 (1968).

    Google Scholar 

  6. Lea, F. M., ‘The Chemistry of Cement and Concrete’, Edward Arnold, London, 547 (1970).

    Google Scholar 

  7. Lea, F. M., reference 6, p. 340.

    Google Scholar 

  8. Lea, F. M., reference 6, p. 338.

    Google Scholar 

  9. Biczok, I., reference 4, p. 163.

    Google Scholar 

  10. Lea, F. M., reference 6, p. 339.

    Google Scholar 

  11. Lafuma, H., ‘Theory of the Expansion of Cements’, Rev. Mater. Constr. Travl. publ. No. 243, 441–444 (1929) (French).

    Google Scholar 

  12. Chatterji, S. and Jeffery, J. W., ‘A New Hypothesis of Sulphate Expansion’, Mag. Concr. Res., 15, No. 44, 83–86 (1963).

    Article  Google Scholar 

  13. Chatterji, S. and Jeffery, J. W., ‘Further Evidence Relating to the New Hypothesis of Sulphate Expansion’, Mag. Concr. Res., 19, No. 60, 185–189 (1967).

    Article  Google Scholar 

  14. Roberts, M. H., Discussion of reference 12, Mag. Concr. Res., 16, No. 49, 236–238 (1964).

    Article  Google Scholar 

  15. Metha, P. K. and Pintz, D., ‘A Review of Research of Expansive Cement Concretes, Part II: The Expansive Cement Component’, Proc. Conf Structure of Concrete and Its Behaviour Under Load, London 1965,473–478, Cement and Concrete Association, London (1968).

    Google Scholar 

  16. Hansen, W. C., ‘Attack on Portland Cement Concrete by Alkali Soils and Waters -A Critical Review’, Highw. Res. Rec., No. 113, 1–32 (1966).

    Google Scholar 

  17. Lea, F. M., referrence 6, p. 347.

    Google Scholar 

  18. Heller, L. and Ben Yair, M., ‘Effect of Sulphate Solutions on Normal and Sulphate Resisting Portland Cement’, J. Appl. Chem., 14, No. 1, 20–30 (1964).

    Article  Google Scholar 

  19. Thorvaldson, T., ‘Chemical Aspects of the Durability of Cement Products’, Proc. Symp. Chem. Cement London, 436–466 (1952).

    Google Scholar 

  20. Biczok, I., reference 4, p. 190.

    Google Scholar 

  21. Lea, F. M., reference 6, p. 344.

    Google Scholar 

  22. Lea, F. M., reference 6, p. 348.

    Google Scholar 

  23. Biczok, I., reference 4, p. 217.

    Google Scholar 

  24. Locher, F. W., ‘Influence of Chloride and Hydrocarbonate on Sulphate Attack’, Proc. Symp. Chem. Cement Tokyo, 3, 328–335 (1968).

    Google Scholar 

  25. Powers, T. C., ‘The Physical Structure and Engineering Properties of Concrete’, Portland Cement Ass. Bull., No. 90, Chicago (1958).

    Google Scholar 

  26. Powers, T. C., ‘A Working Hypothesis for Further Studies on Frost Resistance of Concrete’, Proc. Am. Concr. Inst., 41, No. 4, 245–272 (1945).

    MathSciNet  Google Scholar 

  27. Powers, T. C. and Helmuth, R. H., ‘Theory of Volume Changes in Hardened Portland Cement Paste During Freezing’, Proc. Highw. Res. Bd., 32,285–297 (1953).

    Google Scholar 

  28. Powers, T. C., ‘Resistance to Weathering-Freezing and Thawing’, Am. Soc. Test. Mater, Spec. tech. Publ., No. 169, 182–187 (1957).

    Google Scholar 

  29. Powers, T. C., ‘Basic Considerations Pertaining to Freezing and Thawing Tests’, Proc. Am. Soc. Test. Mater., 55, 1132–1155 (1955).

    Google Scholar 

  30. Taber, S., ‘Frost Heaving’, J. Geol., 37, 428–461 (1929).

    Article  Google Scholar 

  31. Taber, S., ‘Freezing and Thawing of Soils as Factors in the Destruction of Road Pavements’, Public Roads, 11, No. 6, 113–132 (1930).

    Google Scholar 

  32. Collins, A. R., ‘The Destruction of Concrete by Frost’, J. Inst. Civ. Engrs., No. 1, 29–41 (1944).

    Article  Google Scholar 

  33. Nerenst, P., ‘Frost Action in Concrete’, Proc. Symp. Chem. Cement Washington, 2, 807–828 (1960).

    Google Scholar 

  34. Helmuth, R. A., Discussion of reference 33 in reference 33, p. 829.

    Google Scholar 

  35. Litvan, G. G., ‘Phase Transitions of Absorbets: IV—Mechanism of Frost Action in Hardened Cement Paste’, J. Am. Ceram. Soc., 55, No. 1, 38–43 (1972).

    Article  Google Scholar 

  36. Whiteside, T. M. and Sweet, H. S., ‘Effect of Mortar Saturation in Concrete Freezing’, Proc. Highw. Res. Bd., 30, 193–204 (1950).

    Google Scholar 

  37. Powers, T. C., ‘Void Spacing as a Basis for Producing Air-Entrained Concrete’, Proc. Am. Concr. Inst., 25, No. 9, 741–760 (1954).

    MathSciNet  Google Scholar 

  38. Powers, T. C., ‘The Air Requirement of Frost Resistant Concrete’, Proc. Highw. Res. Bd., 29, 184–202 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1979 I. Soroka

About this chapter

Cite this chapter

Soroka, I. (1979). Chemical and frost resistance of hardened cement paste. In: Portland Cement Paste and Concrete. Palgrave, London. https://doi.org/10.1007/978-1-349-03994-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-03994-4_6

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-03996-8

  • Online ISBN: 978-1-349-03994-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics