Skip to main content

Processing of Dipole and More Complex Hydrodynamic Stimuli Under Still- and Running-Water Conditions

  • Chapter
Sensory Processing in Aquatic Environments

Abstract

As an adaptation to their environment, aquatic animals have developed sophisticated hydrodynamic receptor systems for the detection of water motions. The hydrodynamic receptor system of fishes is the mechanosensory lateral line. The sensory units of the lateral line are the neuromasts that are dispersed over the body surface. Superficial neuromasts are freestanding on the surface of the skin and are sensitive to water velocity. Canal neuromasts are embedded in lateral line canals and respond to pressure gradients between canal pores. The peripheral lateral line responds strongly to sinusoidal water motions generated by a stationary vibrating sphere. In running water, superficial neuromast responses to hydrodynamic stimuli are masked, whereas trunk canal neuromast responses are hardly affected, indicating a clear form-function relationship of the peripheral lateral line. Neurons in the fish brainstem and midbrain are less sensitive to sine wave stimuli but show a variety of responses to moving object stimuli. In the brainstem, a functional subdivision can be found similar to that in the lateral line periphery. These findings show that natural stimulus conditions, for example, moving sources and background noise, are necessary to reveal the functional limitations and evolutionary adaptations of the lateral line system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alexandre, D., and Ghysen, A. (1999). Somatotopy of the lateral line projection in larval zebrafish. Proc. Natl. Acad. Sci. USA 13:7758–7762.

    Google Scholar 

  • Au, W.W.L., and Snyder, K.J. (1980). Long-range target detection in open waters by an echolocating Atlantic bottlenose dolphin (Tursiops truncatus). J. Acoust. Soc. Am. 68:1077–1084.

    Article  Google Scholar 

  • Bartels, M., Münz, H., and Claas, B. (1990). Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum. J. Comp. Physiol. A. 167:347–356.

    Article  Google Scholar 

  • Bleckmann, H. (1994). Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Progress in Zoology, Vol. 41 (Rathmayer, W., ed.), pp. 1–115. Stuttgart, Jena, New York: Gustav Fischer-Verlag.

    Google Scholar 

  • Bleckmann, H., and Bullock, T.H. (1989). Central nervous physiology of the lateral line system, with special reference to cartilaginous fishes. In:The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, H., eds.), pp. 397–408. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.

    Google Scholar 

  • Bleckmann, H., and Münz, H. (1990). Physiology of lateral-line mechanoreceptors in a teleost with highly branched, multiple lateral lines. Brain Behav. Evol. 35:240–250

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann, H., and Zelick, R. (1993). The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J. Comp. Physiol. A. 172:115–128.

    Article  Google Scholar 

  • Bleckmann, H., Bullock, T.H., and Jørgensen, J.M. (1987). The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii ). J. Comp. Physiol. A. 161:67–84.

    Article  PubMed  CAS  Google Scholar 

  • Blickhan, R., Krick, C., Breithaupt, T., Zehren, D., and Nachtigall, W. (1992). Generation of a vortexchain in the wake of a subundulatory swimmer. Naturwissenschaften 79:220–221.

    Article  Google Scholar 

  • Boord, R.L., and Montgomery, J.C. (1989). Central mechanosensory lateral line centers and pathways among the elasmobranchs. In: The Mechanosensory Lateral Line (Coombs, S., Görner, P., and Münz, H., eds.), pp. 323–340. Neurobiology and evolution. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.

    Google Scholar 

  • Claas, B., and Münz, H. (1981). Projection of lateral line afferents in a teleost brain. Neurosci. Lett. 23:287–290.

    Article  PubMed  CAS  Google Scholar 

  • Coombs, S., Braun, C.B., and Donovan, B. (2001). The orienting response of lake michigan mottled sculpin is mediated by canal neuromasts. J. Exp. Biol. 204:337–348.

    PubMed  CAS  Google Scholar 

  • Coombs, S., Fay, R.R., and Janssen, I (1989a). Hot-film anemometry for measuring lateral line stimuli. J. Acoust. Soc. Am. 85:2185–2193.

    Article  PubMed  CAS  Google Scholar 

  • Coombs, S., Hastings, M., and Finneran, J. (1996). Modeling and measuring lateral line excitation patterns to changing dipole source locations. J. Comp. Physiol. A. 178:359–371.

    Article  PubMed  CAS  Google Scholar 

  • Coombs, S., Janssen, J., and Webb, J. F. (1989b). Diversity of lateral line systems: Evolutionary and functional considerations. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, H., eds.), pp. 393–393. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.

    Google Scholar 

  • Coombs, S., Mogdans, J., Halstead, M., and Montgomery, J. (1998). Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J. Comp. Physiol. A. 182:609–626.

    Article  Google Scholar 

  • Dehnhardt, G., Mauck, B., and Bleckmann, H. (1998). Seal whiskers detect water movements. Nature 394:235–236.

    Article  CAS  Google Scholar 

  • Dehnhardt, G., Mauck, B., Hanke, W., and Bleckmann, H. (2001). Hydrodynamic trail-following in harbor seals. Science 293:102–104.

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf, S. (1963). The functioning and significance of the lateral line organs. Biol. Rev. 38:51–106.

    Article  PubMed  CAS  Google Scholar 

  • Engelmann, I, Hanke, W., Mogdans, J., and Bleckmann, H. (2000). Hydrodynamic stimuli and the fish lateral line. Nature 408:51–52.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch, B. (1988). The lateral line and inner ear afferents in larval and adult urodeles. Brain Behav. Evol. 31:325–348.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch, B., Nikundiwe, A.M., and Will, U. (1984). Projection patterns of lateral line afferents in anurans: A comparative HRP study. J. Comp. Neurol. 229:451–469.

    Article  PubMed  CAS  Google Scholar 

  • Görner, P. (1963). Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis (Daudin). J. Comp. Physiol. A. 47:316–338.

    Google Scholar 

  • Hanke, W (2001). Hydrodynamische Spuren schwimmender Fische und ihre mögliche Bedeutung für das Jagdverhalten fischfressender Tiere. Doctoral thesis, University of Bonn.

    Google Scholar 

  • Hanke, W., Brücker, C., and Bleckmann, H. (2000). The aging of water disturbances caused by swimming goldfish. J. Exp. Biol. 203:1193–1200.

    PubMed  CAS  Google Scholar 

  • Harris, G.G., and Bergeijk, WA. van (1962). Evidence that the lateral line organ responds to near-field displacements of sound sources in water. J. Acoust. Soc. Am. 34:1831–1841.

    Article  Google Scholar 

  • Kalmijn, A.J. (1988). Hydrodynamic and acoustic field detection. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, H., eds.), pp. 80–130. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.

    Google Scholar 

  • Kroese, A.B.A., and Netten, S.M. van (1988). Sensory transduction in lateral line hair cells. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, H., eds.), pp. 275–284. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.

    Google Scholar 

  • McCormick, C.A. (1989). Central lateral line mechanosensory pathways in bony fish. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, H., eds.), pp. 341–364. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.

    Google Scholar 

  • McCormick, C.A., and Braford, M.R. Jr. (1988). Central connections of the octavolateralis system: Evolutionary considerations. In: The Mechanosensory Lateral line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, H., eds.), pp. 753–756. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.

    Google Scholar 

  • Mogdans, J., and Bleckmann, H. (1998). Responses of the goldfish trunk lateral line to moving object. J. Comp. Physiol. A. 182:659–676.

    Article  Google Scholar 

  • Mogdans, J., and Bleckmann, H. (1999). Peripheral lateral line responses to amplitude-modulated sinusoidal wave stimuli. J. Comp. Physiol. A. 185:173–180.

    Article  Google Scholar 

  • Mogdans, J., and Goenechea, L. (1999). Responses of medullary lateral line units in the goldfish, Carassius auratus, to sinusoidal and complex wave stimuli. Zoology 102:227–237.

    Google Scholar 

  • Mogdans, J., Bleckmann, H., and Menger, N. (1997). Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli. Brain Behav. Evol. 50:261–283.

    Article  PubMed  CAS  Google Scholar 

  • Mogdans, J., Wojtenek, W., and Hanke, W. (1999). The puzzle of hydrodynamic information processing: How are complex water motions analyzed by the lateral line? European J. Morphol. 37:195–199.

    Article  CAS  Google Scholar 

  • Montgomery, J.C. (1989). Lateral line detection of planktonic prey. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, H., eds.), pp. 571–574. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.

    Google Scholar 

  • Montgomery, J., Bodznick, D., and Halstead, M. (1996). Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scopeana papillosus. J. Exp. Biol. 199:893–899.

    PubMed  Google Scholar 

  • Müller, H.M., Fleck, A., and Bleckmann, H. (1996). The responses of central octavolateralis cells to moving sources. J. Comp. Physiol. A. 179:455–471.

    Article  Google Scholar 

  • Münz, H. (1979). Morphology and innervation of the lateral line system in Sarotherodon niloticus L. (Cichlidae, Teleostei). Zoomorphology 93:73–86.

    Article  Google Scholar 

  • Münz, H. (1989). Functional organization of the lateral line periphery. In: The Mechanosensory Lateral Line: Neurobiology and Evolution (Coombs, S., Görner, P., and Münz, H., eds.), pp. 295–298. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.

    Google Scholar 

  • New, J., Braun, C.B., and Walter, K. (2000). Central projections of nerve fibers innervating individual canal neuromast organs in the muskellunge, Esox masquinongy. Soc. Neurosci. 26:146 (Abstract).

    Google Scholar 

  • New, J.G., Coombs, S., McCormick, C.A., and Oshel, P.E. (1996). Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus. J. Comp. Neurol. 366:534–546.

    Article  PubMed  CAS  Google Scholar 

  • Newby, T.C., Hart, F.M., and Arnold, R.A. (1970). Weight and blindness in harbour seals. J. Mamm. 51:152.

    Article  Google Scholar 

  • Pitcher, T.J. (1993). Functions of schoaling behaviour in teleosts. In: Behaviour of Teleost Fishes (Pitcher, T.J., ed.), pp. 393–440. London: Chapman and Hall.

    Google Scholar 

  • Plachta, D., Mogdans, J., and Bleckmann, H. (1999). Responses of midbrain lateral line units of the goldfish, Carassius auratus, to constant-amplitude and amplitude modulated water wave stimuli. J. Comp. Physiol. A. 185:405–417.

    Article  Google Scholar 

  • Plachta, D. (2000). Responses of toral lateral line units of the goldfish, Carassius auratus, to dipole and complex water wave stimuli. Doctoral thesis, Bonn.

    Google Scholar 

  • Pohlmann, K., Grasso, F.W., and Breithaupt, T. (2001). Tracking wakes: The nocturnal predatory strategy of piscivorous catfish. PNAS 98:7371–7374.

    Article  PubMed  CAS  Google Scholar 

  • Song, J., and Northcutt, R.G. (1991). The primary projections of the lateral-line nerves of the Florida gar, Lepisosteus platyrhincus. Brain Behav. Evol. 37:38–63.

    Article  PubMed  CAS  Google Scholar 

  • Videler, J.J., and Wardle, C.S. (1991). Fish swimming stride by stride: Speed limits and endurance. Rev. Fish Biol. Fish 1:23–40.

    Article  Google Scholar 

  • Vogel, D., and Bleckmann, H. (2001). Behavioral discrimination of water motions caused by moving objects. J. Comp. Physiol. A. 186:1107–1117.

    Article  CAS  Google Scholar 

  • Wojtenek, W., Mogdans, J., and Bleckmann, H. (1998). The responses of midbrain lateral line units of the goldfish Carassius auratus to moving objects. Zoology 101:69–82.

    Google Scholar 

  • Wubbels, R.J., Kroese, A.B.A., and Schellart, N.A.M. (1993). Response properties of lateral line and auditory units in the medulla oblongata of the rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 179:77–92.

    Google Scholar 

  • Zittlau, K.E., Claas, B., and Münz, H. (1986). Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J. Comp. Physiol. A. 158:469–477.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Bleckmann, H., Mogdans, J., Dehnhardt, G. (2003). Processing of Dipole and More Complex Hydrodynamic Stimuli Under Still- and Running-Water Conditions. In: Collin, S.P., Marshall, N.J. (eds) Sensory Processing in Aquatic Environments. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22628-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22628-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95527-8

  • Online ISBN: 978-0-387-22628-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics