Skip to main content

Iterative Methods for the Solution of Large Systems of Linear Equations. Additional Methods

  • Chapter
Introduction to Numerical Analysis

Part of the book series: Texts in Applied Mathematics ((TAM,volume 12))

Abstract

Many applications require the solution of very large systems of linear equations Ax = b in which the matrix A is fortunately sparse, i.e., has only relatively few nonzero elements. Such systems arise, for instance, if difference methods or finite element methods arc being used for solving boundary value problems in partial differential equations. The classical elimination methods [see Chapter 4] are not suitable in this context since they tend to lead to the formation of dense intermediate matrices, making the number of arithmetic operations necessary for the solution too large even for present-day computers, not to mention the fact that the memory requirements for such intermediate matrices exceed available space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 8

  • Arnoldi, W.E. (1951): The principle of minimized iteration in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17–29.

    MathSciNet  MATH  Google Scholar 

  • Axelsson, O. (1977): Solution of linear systems of equations: Iterative methods. In: Barker (1977).

    Google Scholar 

  • Axelsson, O. (1994): Iterative Solution Methods. Cambridge, UK: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Barker, V.A. (Ed.) (1977): Sparse Matrix techniques. Lecture Notes in Mathematics Vol. 572, Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Braess, D. (1997): Finite Elemente. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Bramble, J.H. (1993): Multigrid Methods. Harlow: Longman.

    MATH  Google Scholar 

  • Brandt, A. (1977): Multi-level adaptive solutions to boundary value problems. Math. of Comput. 31, 333–390.

    Article  MATH  Google Scholar 

  • Briggs, W.L. (1987): A Multiyrid Tutorial. Philadelphia: SIAM.

    Google Scholar 

  • Buneman, O. (1969): A compact non-iterative Poisson solver. Stanford University, Institute for Plasma Research Report Nr. 294, Stanford, CA.

    Google Scholar 

  • Buzbee, B.L., Dorr, F.W. (1974): The direct solution of the biharmonic equation on rectangular regions and the Poisson equation on irregular regions. SIAM J. Numer. Anal. 11, 753–763.

    Article  MathSciNet  MATH  Google Scholar 

  • Buzbee, B.L., F.W., George, J.A., Golub, G.H. (1971): The direct solution of the discrete Poisson equation on irregular regions. SIAM J. Numer. Anal. 8, 722–736.

    Article  MathSciNet  MATH  Google Scholar 

  • Buzbee, B.L., Golub, G.H., Nielson, C.W. (1970): On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T.F., Glowinski, R., Periaux, J., Widlund, O. (Eds.) (1989): Proceedings of the Second International Symposium on Domain Decomposition Methods. Philadelphia: SIAM.

    Google Scholar 

  • Fletcher, R. (1974). Conjugate gradient methods for indefinite systems. In: G.A. Watson (ed.), Proceedings of the Dundee Biennial Conference on Numerical Analysis 1974, p. 73–89. New York: Springer-Verlag 1975.

    Google Scholar 

  • Forsythe, G.E., Moler, C.B. (1967): Computer Solution of Linear Algebraic Systems. Series in Automatic Computation. Englewood Cliffs, N.J.: Prentice Hall.

    Google Scholar 

  • Freund, R.W., Nachtigal, N.M. (1991): QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numerische Mathematik 60, 315–339

    Article  MathSciNet  MATH  Google Scholar 

  • George, A. (1973): Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363.

    Article  MathSciNet  Google Scholar 

  • Glowinski, R., Golub, G.H., Meurant, G.A., Periaux, J. (Eds.) (1988): Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations. Philadelphia: SIAM.

    Google Scholar 

  • Hackbusch, W. (1985): Multigrid Methods and Applications. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Hackbusch, W., Trottenberg, U. (Eds.) (1982): Multigrid Methods. Lecture Notes in Mathematics. Vol. 960. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Hestenes, M.R., Stiefel. E. (1952): Methods of conjugate gradients for solving linear systems. Nat. Bur. Standards, J. of Res. 49, 409–436.

    Article  MathSciNet  MATH  Google Scholar 

  • Hockney, R.W. (1969): The potential calculation and some applications. Methods of Computational Physics 9, 136–211.

    Google Scholar 

  • Householder, A.S. (1964): The Theory of Matrices in Numerical Analysis. New York: Blaisdell Publ. Comp.

    MATH  Google Scholar 

  • Keyes, D.E., Gropp, W.D. (1987): A comparison of domain decomposition techniques for elliptic partial differential equations. SIAM J. Sci. Statist. Comput. 8, 166–202.

    Article  MathSciNet  Google Scholar 

  • Lanczos, C. (1950): An iteration method for the solution of the eigenvalue problem of linear differential and integral equations. J. Res. Nat. Bur. Standards. 45, 255–282.

    Article  MathSciNet  Google Scholar 

  • Lanczos, C. (1952): Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bur. Standards. 49, 33–53.

    Article  MathSciNet  Google Scholar 

  • McCormick, S. (1987): Multigrid Methods. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Meijerink, J.A., van der Vorst, H.A. (1977): An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp. 31, 148–162.

    MathSciNet  MATH  Google Scholar 

  • O’Leary, D.P., Widlund, O. (1979): Capacitance matrix methods for the Helmholtz equation on general three-dimensional regions. Math. Comp. 33, 849–879.

    MathSciNet  MATH  Google Scholar 

  • Paige, C.C., Saunders, M.A. (1975): Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Analysis 12, 617–624.

    Article  MathSciNet  MATH  Google Scholar 

  • Proskurowski, W., Widlund, O. (1976): On the numerical solution of Helmholtz’s equation by the capacitance matrix method. Math. Comp. 30, 433–468.

    MathSciNet  MATH  Google Scholar 

  • Quarteroni, A., Valli, A. (1997): Numerical Approximation of Partial Differential Equations, 2d edition. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Reid, J.K. (1971a): Large Sparse Sets of Linear Equations. London, New York: Academic Press.

    Google Scholar 

  • Reid, J.K. (1971): On the method of conjugate gradients for the solution of large sparse systems of linear equations. In: Reid ( 1971a ). 231–252.

    Google Scholar 

  • Rice, J.R., Boisvert, R.F. (1984): Solving Elliptic Problems Using ELLPACK. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Saad, Y. (1996): Iterative Methods for Sparse Linear Systems. Boston: PWS Publishing Company.

    MATH  Google Scholar 

  • Saad, Y., Schultz, M.H. (1986): GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Scientific and Statistical Computing, 7, 856–869.

    Article  MathSciNet  MATH  Google Scholar 

  • Schröder, J., Trottenberg, U. (1973): Reduktionsverfahren für Differenzengleichungen bei Randwertaufgaben I. Numer.Math. 22, 37–68.

    Article  MathSciNet  MATH  Google Scholar 

  • Schröder, J., Reutersberg, H. (1976): Reduktionsverfahren für Differenzengleichungen bei Randwertaufgaben II. Numer. Math. 26, 429–459.

    Article  MathSciNet  MATH  Google Scholar 

  • Sonneveldt, P. (1989): CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Scientific and Statistical Computing 10, 36–52.

    Article  Google Scholar 

  • Swarztrauber, P.N. (1977): The methods of cyclic reduction. Fourier analysis and the FACR. algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Review 19, 490–501.

    Article  MathSciNet  MATH  Google Scholar 

  • Vorst (1992): Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Scientific and Statistical Computing 12, 631–644.

    Google Scholar 

  • Varga, R.S. (1962): Matrix Iterative Analysis. Series in Automatic Computation. Englewood Cliffs: Prentice Hall (2d revised and expanded edition 2000, Berlin, Heidelberg, New York: Springer-Verlag ).

    Google Scholar 

  • Wachspress, E.L. (1966): Iterative Solution of Elliptic Systems and Application to the Neutron Diffusion Equations of Reactor Physics. Englewood Cliffs, N.J.: Prentice-Hall.

    Google Scholar 

  • Wilkinson, J.H., Reinsch, C. (1971): Linear Algebra. Handbook for Automatic Computation, Vol. H. Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 186. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Young, D.M. (1971): Iterative Solution of Large Linear Systems. Computer Science and Applied Mathematics. New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stoer, J., Bulirsch, R. (2002). Iterative Methods for the Solution of Large Systems of Linear Equations. Additional Methods. In: Introduction to Numerical Analysis. Texts in Applied Mathematics, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21738-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21738-3_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3006-4

  • Online ISBN: 978-0-387-21738-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics