Skip to main content

Chemical Degradation and Physical Aging of Aluminum(III) 8-Hydroxyquinoline: Implications for Organic Light-Emitting Diodes and Materials Design

  • Chapter
Organic Light-Emitting Devices

Abstract

A traditional barrier to marketing organic light-emitting diode (OLED) technology has been achieving devices capable of sustaining brightness levels with minimum drift over long periods of time as well as maintaining longevity while operating at elevated temperatures (e.g., 60–80°C). In many cases, product developers have designed around these problems (e.g., by extensive passivation1,2 or with the driving technology),3 but understanding of the decay processes is still by many means insufficient, especially with respect to the intrinsic limitations imposed by the materials in question. This type of knowledge gives upper-bound design constraints and should give insight in materials or device designs with greater stability or longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. P. Rogers (to Motorola, Inc.) U.S. Patent 5,874, 804 (1999).

    Google Scholar 

  2. T. Yamashita, T. Ogura, H. Nakaya, and M. Yoshida (to Sharp Kabushiki Kaisha) U.S. Patent 5, 189, 405 (1993).

    Google Scholar 

  3. A. Dodabalapur, Z. Bao, A. Makhija, J. G. Laquindanum, V. R. Raju, and Y. Feng, Appl. Phys. Lett. 73, 142 (1998).

    Article  ADS  Google Scholar 

  4. P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarthy, and M. E. Thompson, Appl. Phys. Lett. 65, 2922 (1994).

    Article  ADS  Google Scholar 

  5. H. Antoniadis, M. R. Hueschen, J. McElvain, J. N. Miller, R. L. Moon, D. B. Roitman, and J. R. Sheats, ACS Polym. Prepr. 38, 382 (1997).

    Google Scholar 

  6. J. McElvain, H. Andoniadis, M. Hueschen, J. Miller, D. Roitman, J. Sheats, and R. Moon, J. Appl. Phys. 80, 6002 (1996).

    Article  ADS  Google Scholar 

  7. X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, E G. Tao, C. E. Zhou, and S. T. Lee, Appl. Phys. Lett. 74, 609 (1999).

    Article  ADS  Google Scholar 

  8. C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lett. 66, 2679 (1995).

    Article  ADS  Google Scholar 

  9. C. Redon, F. Brochard-Wyart, and F. Rondelez, Phys. Rev. Lett. 66, 715 (1991).

    Article  ADS  Google Scholar 

  10. P. Fenter, F Schreiber, V. Bulovic, and S. R. Forrest, Chem. Phys. Lett. 277, 521 (1997).

    Article  ADS  Google Scholar 

  11. M. Fujihira, L.-M. Do, A. Koike, and E.-M. Han, Appl. Phys. Lett. 68, 1787 (1996).

    Article  ADS  Google Scholar 

  12. A. R. Schlatmann, D. W. Floet, A. Hilberer, F Garten, P. J. M. Smulders, T M. Klapwick, and G. Hadziaioannou, Appl. Phys. Lett. 69, 1764 (1996).

    Article  ADS  Google Scholar 

  13. Y. Hirose, A. Kahn, V. Aristov, and P. Soukiassian, Appl. Phys. Lett. 68, 217 (1996).

    Article  ADS  Google Scholar 

  14. E. Gautier, A. Lorin, J.-M. Nunzi, A. Schalchli, J.-J. Benattar, and D. Vital, Appl. Phys. Lett. 69, 1071 (1996).

    Article  ADS  Google Scholar 

  15. F. Papadimitrakopoulos, X-M. Zhang, D. L. Thomsen, and K. A. Higginson, Chem. Mater. 8, 1363 (1996).

    Article  Google Scholar 

  16. F. Papadimitrakopoulos and X-M. Zhang, Synth. Met. 85, 1221 (1996).

    Article  Google Scholar 

  17. K. A. Higginson, X-M. Zhang, and F Papadimitrakopoulos, Chem. Mater. 10, 1017 (1997).

    Article  Google Scholar 

  18. D. L. Thomsen, Ph.D. thesis, University of Connecticut, 1999.

    Google Scholar 

  19. C. Adachi, K. Nagai, and N. Tamoto, Jpn. J. Appl. Phys. Part 1 35, 4819 (1996).

    Article  ADS  Google Scholar 

  20. F Papadimitrakopoulos, M. Yan, L. J. Rothberg, H. E. Katz, E. A. Chandross, and M. E. Galvin, Mol. Cryst. Liq. Cryst. 256, 663 (1994).

    Google Scholar 

  21. I. Sokolik, A. D. Walser, R. Priestley, R. Dorsinville, and C. W. Tang, SPE Prepr. (1996).

    Google Scholar 

  22. E.-M. Han, L.-M. Do, N. Yamamoto, and M. Fujihira, Thin Solid Films 273, 202 (1996).

    Article  ADS  Google Scholar 

  23. Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai, Appl. Phys. Lett. 65, 807 (1994).

    Article  ADS  Google Scholar 

  24. S. Tokito, H. Tanaka, K. Noda, A. Okada, and Y. Taga, IEEE Trans. Electron Devices 44, 1239 (1997).

    Article  ADS  Google Scholar 

  25. B. E. Koene, D. E. Loy, and M. E. Thompson, Chem. Mater. 10, 2235 (1998).

    Article  Google Scholar 

  26. B. R. Hsieh, unpublished (2003).

    Google Scholar 

  27. Y. Yang and A. J. Heeger, Applied Physics Letters 64, 122–124 (1994).

    Google Scholar 

  28. A. Yamamori, C. Adachi, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett. 72, 2147 (1998).

    Article  ADS  Google Scholar 

  29. S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).

    Article  ADS  Google Scholar 

  30. P. Dannetun, M. Logdlund, C. Fredriksson, M. Boman, S. Stafstrom, W. R. Salaneck, B. E. Kohler, and C. Spangler, in Polymer-Solid Interfaces, edited by J. J. Pireaux, P. Bertrand, and J. L. Bredas, IOP, Bristol, 1992.

    Google Scholar 

  31. S. Egusa, N. Gemma, A. Miura, K. Mizushima, and M. Azuma, J. Appl. Phys. 71, 2042 (1992).

    Article  ADS  Google Scholar 

  32. Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, and S. R. Forrest, Phys. Rev. B 54, 13, 748 (1996).

    Google Scholar 

  33. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).

    Article  ADS  Google Scholar 

  34. R. Schlaf, B. A. Parkinson, P. A. Lee, K. W. Nebesny, G. Jabbour, B. Kippelen, N. Peyghambarian, and N. R. Armstrong, J. Appl. Phys. 84, 6729 (1998).

    Article  ADS  Google Scholar 

  35. K. A. Higginson, Ph.D. thesis, University of Connecticut, 1999.

    Google Scholar 

  36. K. A. Higginson, M. Mathai, F. Papadimitrakopoulos, and B. R. Hsieh, Inter. Soc. Opt. Eng. Proc. 4105, 243, (2001).

    Google Scholar 

  37. M. K. Mathai, K. A. Higginson, B. R. Hsieh, and F. Papadimitrakopoulos, Appl. Phys. Lett. submitted (2003).

    Google Scholar 

  38. H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, Science 283, 1900 (1999).

    Article  ADS  Google Scholar 

  39. R. Lazzaroni, M. Lodglund, A. Calderone, J.-L. Bredas, P. Dannetun, C. Fauquet, C. Fredriksson, S. Stafstron, and W. R. Salaneck, Synth. Met. 71, 2159 (1995).

    Article  Google Scholar 

  40. A. V. Ragimov, B. A. Mamedov, and S. I. Mustafaeva, Polymer 30, 1851 (1989).

    Article  Google Scholar 

  41. M. Ezrin and G. Lavigne, SPE—ANTEC Proc. 2230 (1991).

    Google Scholar 

  42. D. W. Margerum, G. R. Cayley, D. C. Weatherburn, and G. K. Pagenkopf, in Coordination Chemistry, edited by A. E. Martell, American Chemical Society, Washington, DC, 1978, Vol. 2, pp. 1–220.

    Google Scholar 

  43. H. Schmidbauer, J. Lettenbauer, D. L. Wilkinson, G. Muller, and O. Kumberger, Zeitschr. Naturforsch. 46b (1991).

    Google Scholar 

  44. J. P. Phillips, Chem. Rev. 56, 271 (1956).

    Article  Google Scholar 

  45. P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. of Appl. Phys. 79, 7991 (1996).

    Article  ADS  Google Scholar 

  46. V. Khodorkovsky and J. Y. Becker, in Organic Conductors, edited by J. P. Farges, Marcel Dekker, New York, 1994.

    Google Scholar 

  47. D. T. Sawyer, G. Chiericato, C. T. Angells, E. J. Nanni, and T. Tsuchiya, Anal. Chem. 54, 1720 (1982).

    Article  Google Scholar 

  48. T. Fujinaga, K. Izutsu, and K. Takaoka, J. Electroanal. Chem. 16, 89 (1968).

    Article  Google Scholar 

  49. Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, and K. Shibata, Jpn J. Appl. Phys., Part 2 32, 514 (1993).

    Article  Google Scholar 

  50. R. S. Mulliken and W. B. Person, Molecular Complexes: A Lecture and Reprint Volume, Wiley—Interscience, New York, 1969.

    Google Scholar 

  51. E. Kampar and O. Neilands, Russ. Chem. Rev. 55, 637 (1986).

    Article  Google Scholar 

  52. N. J. Turro, Modern Molecular Photochemistry, University Science Books, Mill Valley, CA, 1991.

    Google Scholar 

  53. M. Xia, X. Liu, and P. Gu, Appl. Opt. 32, 5443 (1993).

    Article  ADS  Google Scholar 

  54. H. A. Davies, in Amorphous Metallic Alloys, edited by F. E. Luborsky, Butterworths, London, 1983, pp. 8–25.

    Google Scholar 

  55. L. F. Pender and R. J. Fleming, J. Appl. Phys. 46, 3426 (1974).

    Article  ADS  Google Scholar 

  56. H. Pagnia and N. Sotnik, Phys. Status Solidii (A) 108, 11 (1988).

    Article  ADS  Google Scholar 

  57. J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, and J. A. Goitia, J. Appl. Phys. 79, 2745 (1996).

    Article  ADS  Google Scholar 

  58. L. C. E. Struik, Physical Aging in Amorphous Polymers and Other Materials, Elsevier, Amsterdam, 1978.

    Google Scholar 

  59. P. Nagels, in Amorphous Semiconductors, Volume 36, edited by M. H. Brodsky, Springer-Verlag, Berlin, 1979, pp. 113–130.

    Chapter  Google Scholar 

  60. N. F. Mott, Phil. Mag. 24, 911 (1971).

    Article  ADS  Google Scholar 

  61. I. Lucas, J. Non-Cryst. Solids 6, 136 (1970).

    Article  ADS  Google Scholar 

  62. H. K. Henisch, E. A. Fagen, and S. R. Ovshinsky, J. Non-Cryst. Solids 4, 538 (1970).

    Article  ADS  Google Scholar 

  63. K. Naito and A. Miura, J. Phys. Chem. 97, 6240 (1993).

    Article  Google Scholar 

  64. T. Wada, Y. Yogo, I. Kikuma, M. Masui, M. Anzai, and M. Takeuchi, Appl. Surface Sci. 65 /66, 376 (1993).

    Article  ADS  Google Scholar 

  65. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).

    Article  ADS  Google Scholar 

  66. N. T. Harrison, D. R. Baigent, I. D. W. Samuel, R. H. Friend, A. C. Grimsdale, S. C. Moratti, and A. B. Holmes, Phys. Rev. B 53, 15, 815 (1996).

    Google Scholar 

  67. J. W. Blatchford, S. W. Jessen, L.-B. Lin, T. L. Gustafson, D.-K. Fu, H.-L. Wang, T. M. Swager, A. G. MacDiarmid, and A. J. Epstein, Phys. Rev. B 54, 9180 (1996).

    Article  ADS  Google Scholar 

  68. R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds, 5th ed., Wiley, New York, 1991.

    Google Scholar 

  69. P. F. James, in Nucleation and Crystallization in Glasses, Volume 4, edited by J. H. Simmons, D. R. Uhlmann, and G. H. Beall, American Chemical Society, Columbus, OH, 1982, pp. 1–47.

    Google Scholar 

  70. M. G. Scott, in Amorphous Metallic Alloys, edited by F. E. Luborsky, Butterworths, London, 1983, pp. 144–168.

    Google Scholar 

  71. Y. Wang, W. Zhang, Y. Li, L. Ye, and G. Yang, Chem. Mater. 11, 530 (1999).

    Article  Google Scholar 

  72. K. Naito, Chem. Mater. 6, 2343 (1994).

    Article  Google Scholar 

  73. J. Zarzycki, Glasses and the Vitreous State, Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  74. J. C. Sturm, W. Wilson, and M. lodice, IEEE J Select. Topics Quantum Electron. 4, 75 (1998).

    Article  Google Scholar 

  75. W. J. MacKnight, E E. Karasz, and J. R. Fried, in Polymer Blends, edited by D. R. Paul and S. Newman, Academic Press, San Diego, 1978, Vol. 1, pp. 186–243.

    Google Scholar 

  76. J. Kido, Chem. Lett. 963 (1997).

    Google Scholar 

  77. H. Mattoussi, H. Murata, C. D. Merritt, Z. H. Kafafi, Y. lizumi, and J. Kido, J. Appl. Phys. (1999).

    Google Scholar 

  78. J. Adolph, E. Baldinger, W. Czaja, and I. Granacher, Phys. Lett. 6, 137 (1963).

    Article  ADS  Google Scholar 

  79. J. G. Simmons and R. R. Verderber, Roy. Soc. Proc. Series A 301, 77 (1967).

    Article  ADS  Google Scholar 

  80. R. Nath and N. N. Perlman, J. Appl. Phys. 65, 4854 (1989).

    Article  ADS  Google Scholar 

  81. A. Ioannidis, E. Forsythe, Y. Gao, M. W. Wu, and E. M. Conwell, Appl. Phys. Lett. 72, 1038 (1998).

    Article  Google Scholar 

  82. H. Antoniadis, J. N. Miller, and D. M. Roitman, in Effects of Hole Carrier Injection and Transport in Organic Light-Emitting Diodes, 1996.

    Google Scholar 

  83. M. A. Lampert and P. Mark, Current Injection in Solids, Academic Press, New York, 1970.

    Google Scholar 

  84. E. W. Forsythe, D. C. Morton, C. W. Tang, and Y. Gao, Appl. Phys. Lett. 73, 1457 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Higginson, K.A., Thomsen, D.L., Yang, B., Papadimitrakopoulos, F. (2004). Chemical Degradation and Physical Aging of Aluminum(III) 8-Hydroxyquinoline: Implications for Organic Light-Emitting Diodes and Materials Design. In: Shinar, J. (eds) Organic Light-Emitting Devices. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21720-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21720-8_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2960-0

  • Online ISBN: 978-0-387-21720-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics