Skip to main content

Molecularly Imprinted Polymers

  • Conference paper
Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 553))

Abstract

Molecularly imprinted polymers (MIPs)1–4 are highly stable polymeric molds that possess selective molecular recognition properties for various kinds of molecules. MIPs consist of highly crosslinked polymers that are synthesized in the presence of a template (imprint) molecule. After removal of template, a cavity is left, which retains affinity and selectivity for the template. Some of MIPs (such as antibody mimics), under optimized conditions, have high selectivities and afffiinity constants comparable with naturally occuring recognition systems such as monoclonal antibodies and receptors2. In addition, their unique stability is superior to that demonstrated by natural biomolecules; and they are robust and inexpensive. The simplicity of their preparation and the ease of adaptation to different practical applications make them very useful for chemical, pharmaceutical, and biotechnological industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wulff, G., 1995, Molecular imprinting in cross-linked materials with the aid of molecular templates — A way towards artificial antibodies. Angew. Chem. Int. Ed. Engl. 34: 1812–1832.

    Article  Google Scholar 

  2. Vlatakis, G., Andersson, L.I., Müller, R. and Mosbach, K., 1993, Drug assay using antibody mimics made by molecular imprinting. Nature 36: 645–647.

    Article  Google Scholar 

  3. Andersson, L. I., 2001, Application of molecularly imprinted polymers in competitive ligand binding assays for analysis of biological samples. In Molecularly Imprinted Polymers (B. Sellergren, ed.) Elsevier Science, Amsterdam, pp. 341–353.

    Google Scholar 

  4. Sellergren, B., and Shea, K.J., 1994, Enantioselective ester hydrolysis catalyzed by imprinted polymers. Tetrahedron Asymmetry 5: 1403–1406.

    Article  Google Scholar 

  5. Baggiani, C., Giraudi, G., Giovannoli, C., Trotta, F., and Vanni, A., 2000, Chromatographic characterization of molecularly imprinted polymers binding the herbicide 2,4,5-trichlorophenoxyacetic acis. J.Chromatogr. A 883: 119–126.

    Article  Google Scholar 

  6. Kempe, M., 1996, Antibody-Mimicking Polymers as Chiral Stationary Phases in HPLC. Anal. Chem. 68: 1948–1953.

    Article  Google Scholar 

  7. Hoginaka, J., and Sanbe, H., 2001, Uniformly sized molecularly imprinted polymer for (s)-naproxen. Retention and molecular recognition properties in aqueous mobile phase. J. Chromatogr. A 913: 141–146.

    Article  Google Scholar 

  8. Suedee, R., Srichuna, T., and Martin, G.P., 2000, Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery of ß-blockers. J. Cont. Rel. 66: 135–147.

    Article  Google Scholar 

  9. Kugimiya, A., and Takeuchi, T., 2001, Surface plasmon resonance sensors using molecularly imprinted polymer for detection of sialic acid. Biosensors & Bioelectronics 16: 1059–1062.

    Article  Google Scholar 

  10. Robinson, D.K., and Mosbach, K., 1989, Molecular imprinting of a transition state analogue leads to a polymer exhibiting esterolytic activity. J. Chem. Soc. Chem. Commun. 649: 969–970.

    Article  Google Scholar 

  11. Bures, P., Huang, Y., Oral, E. and Peppas, N.A., 2001, Surface modifications and molecular imprinting of polymers in medical and pharmaceutical applications. J. Cont. Rel. 72: 25–33.

    Article  Google Scholar 

  12. Lehn, J.M., 1988, Supramolecular Chemistry-Scope and Perspectives: Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl 27: 89–112.

    Article  Google Scholar 

  13. Breslow, R., 1986, Advanced in Enzymology and Related Areas of Molecular Biology Vol. 58 (A. Meister, ed)cham, Wiley, pp.1–60.

    Google Scholar 

  14. Schneider, H-J, 1991, Mechanisms of Molecular Recognition-Investigations with Organic Host-Guest Complexes. Angew Chem. 103, 1419, Angew. Chem. Int. Ed. Engl. 30: 1417–1436.

    Article  Google Scholar 

  15. Wenz, G., 1994, Cyclodextrins as building blocks for supramolecular structures and functional units. Angew Chem., 106, 851, Angew. Chem. Int. Ed. Engl. 33: 803–822.

    Article  Google Scholar 

  16. Wulff, G. and Biffis, A., 2001, Molecularly imprinting with covalent or stoichiometric non-covalent interactions. In Molecularly Imprinted Polymers (B. Sellergren, ed). Elsevier Science, Amsterdam, pp. 71–111.

    Google Scholar 

  17. Mosbach, K., 1994, Molecular Imprinting. Trends Biochem. Sci. 19: 9–14.

    Article  Google Scholar 

  18. Komiyama, M., Takeuchi, T., Mukawa, T. and Asanuma, H., 2003, Fundamentals of Molecular Imprinting. In Molecular Imprinting, (M. Komiyama, T. Takeuchi, T. Mukawa, and H. Asanuma, eds.) Wiley, Weinheim. pp.9–19.

    Google Scholar 

  19. Khasawneh, A.M., Vallano, P.T., and Remcho, V.T., 2001, Affinity screening by packed capillary high performance liquid chromatography using molecular imprinted sorbents. J. Chromatogr. A. 922: 87–97.

    Article  Google Scholar 

  20. Chen, W., Liu, F., Zhang, X., Li, A.K., and Tong, S., 2001, The specificity of a chlorphenamine imprinted polymer and its application. Talanta 55: 29–34.

    Article  Google Scholar 

  21. Baggiani, C., Giraudi, G., Trotta, F., Giovannoli, C., and Vanni, A., 2000, Chromatographic characterization of a molecular imprinted polymer binding cortisol. Talanta 51: 71–75.

    Article  Google Scholar 

  22. Sreenivasan, K., 1998, Effect of the type of monomers of molecularly imprinted polymers on the interaction with steroids. J. Appl. Polym. Sci. 68: 1863–1866.

    Article  Google Scholar 

  23. Baggiani, C., Trotta, F., Giraudi, G., Giovannoli, C., and Vanni, A., 1999, A molecularly imprinted polymer for the pesticide bentazone. Anal. Commun. 36: 263–266.

    Article  Google Scholar 

  24. Kempe, M., Glad, M., and Mosbach, K., 1995, An Approach Towards Surface Imprinting Using the Enzyme Ribonuclease A, J Mol. Recogn. 8: 35–39.

    Article  Google Scholar 

  25. Liao, Y., Wang, W., and Wang, B., 1998, Enantioselective polymeric transporters for tryptophan, phenylalanine and histidine prepared using molecular imprinting techniques. Bioorg. Chem. 26: 309–322.

    Article  Google Scholar 

  26. Nilsson, K. G. I., Sakaguuchi, K., Gemeiner, P., and Mosbach, K., 1995, Molecular imprinting of acetylated carbohydrate derivatives into methacrylic polymers. J. Chromatogr. A 707: 199–203.

    Article  Google Scholar 

  27. Wizeman, W. J., and Kofinas, P., 2001, Molecularly imprinted polymer hydrogels displaying isomerically resolved glucose binding. Biomaterials 22: 1485–1491.

    Article  Google Scholar 

  28. Spivak, D.A., and Shea, J. K., 1998, Binding of nucleotide bases by imprinted polymers. Macromolecules 31: 2160–2165.

    Article  Google Scholar 

  29. Wulff, G., and Sarhan, A., 1972, Use of polymers with enzyme analogue structures for the resolution of enantiomers. Angew. Chem. Int. Ed. Engl. 11: 341–344.

    Google Scholar 

  30. Arshady, R., and Mosbach, K., 1981, Synthesis of substrate selective polymers by host-guest polymerization. Makromol. Chem. 182: 687–692.

    Article  Google Scholar 

  31. Wulff, G., Vesper, W., Grobe-Einsler, R. and Sarhan, A., 1977, Enzyme-analague built polymers, 4) On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates. Makromol. Chem. 178: 2799–2817.

    Article  Google Scholar 

  32. Komiyama, M., Takeuchi, T., Mukawa, T. and Asanuma, H. (eds), 2003, Molecular Imprinting, Wiley, Weinheim.

    Google Scholar 

  33. Bartsch, R.A. and Maeda, M. (eds), 1998, Molecular and Ionic Recognition with Imprinted Polymer, ACS-Symposium Series 703, Oxford Univ. Press, Washington, DC.

    Google Scholar 

  34. Mosbach, K., Haupt, K., Liu, X. C., Cormack, P. A. G. and Ramström, O., 1998, “Molecular Imprinting: Status artis et quo vadere? In Molecular and Ionic Recognition with Imprinted Polymers. (R. A. Bartsch and M. Maeda, Eds). ACS-Symposium Series 703, Oxford University Press, Washington, DC. pp. 29–48.

    Chapter  Google Scholar 

  35. Kriz, D., Ramström, O., Svensson, A. and Mosbach, K., 1995, A Biomimetic Sensor Based on a Molecularly Imprinted Polymer as a Recognition Element Combined with Fiber-Optic Detection. Anal. Chem. 67: 2142–2144.

    Article  Google Scholar 

  36. Whitcombe, M.S., Rodriquez, M.E., Villar, P. and Vuifson, E.N., 1995, A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: Synthesis and characterization of polymeric receptors for cholesterol. J. Am. Chem. Soc. 117: 7105–7111.

    Article  Google Scholar 

  37. Sellergren, B. and Andersson, L, 1990, Molecular recognition in macroporous polymers prepared by a substrate analogue imprinting strategy. J. Org. Chem. 55: 3381–3383.

    Article  Google Scholar 

  38. Nicholls, I.A. and Andersson, H.S., 2001, Thermodynamic principles underlying molecularly imprinted polymer formulation and ligand recognition. In Molecularly Imprinted Polymers (Sellergren, B. ed). Elsevier Science, Amsterdam, pp. 60–70.

    Google Scholar 

  39. Sellergren, B., 2001, The non-covalent approach to molecular imprinting. In Molecularly Imprinted Polymers (B. Sellegren, ed). Elsevier Science, Amsterdam, pp. 114–184.

    Google Scholar 

  40. Moring, S. E., Wong, S. O., and Strobaugh, J. F., 2002, Target specific sample preparation from aqueous extracts with molecular imprinted polymers. J. Pharm. Biomed. Anal. 27: 719–728.

    Article  Google Scholar 

  41. Ji, Z., and Xiwen, H., 1999, Study of the nature of recognition in molecularly imprinted polymer selective for 2-aminopyridine. Anal. Chim. Act. 381: 85–91.

    Article  Google Scholar 

  42. Kempe, M., and Mosbach, K., 1991, Binding studies on substrate and enantio-selective molecularly imprinted polymers. Anal. Lett. 24: 1137–1145.

    Article  Google Scholar 

  43. Baggiani, C, Trotta, F., Giraudi, G., Giovannoli, C., and Vanni, A., 1999, Chromatographic characterization of a molecularly imprinted polymer binding theophylline in aqueous buffers. J. Chromatogr. A 786: 23–29.

    Google Scholar 

  44. Matsui, J., Kato, T., Takeuchi, T., Suzuki, M., Yokoyama, K., Tamiya, E., and Karube, I., 1993, Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique. Anal. Chem. 65: 2223–2224.

    Article  Google Scholar 

  45. Brüggemann, O., Freitag, R., Whitcombe, M. J., and Vuifson, E. N., 1997, Comparison of polymer coatings of capillaries for capillary electrophoresis with respect to their applicability to molecular imprinting and electrochromatography. J. Chromatogr. A 781:43–53.

    Article  Google Scholar 

  46. Takeuchi, T., Fukuma, D., and Matsui, I., 1999, Combinatorial molecular imprinting: An approach to synthetic polymer receptors. Anal. Chem. 71:285–290.

    Article  Google Scholar 

  47. Hedborg, E., Winquist, F., Lundström, I., Andersson, L.I., and Mosbach, K., 1993, Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices. Sensors and Actuators A 37–38:796–799.

    Article  Google Scholar 

  48. Ramström, O., Nicholls, I.A., and Mosbach, K., 1994, Synthetic peptide receptor mimics: highly stereoselective recognition in non-covalent molecularly imprinted polymers. Tetrahedron:Assymmetry 5:649–656.

    Article  Google Scholar 

  49. Nilsson, K., Lindell, K., Norrlow, O., and Sellergen, B., 1994, Imprinted polymers as antibody mimetics and new afifiinity gels for selective separations in capillary electrophoresis. J. Chromatogr. A 680: 57–61.

    Article  Google Scholar 

  50. Kriz, O., Kriz, C. B., Andersson, L., and Mosbach, K., 1994, Thin layer chromatography based on molecular imprinting technique. Anal. Chem. 66: 2636–2639.

    Article  Google Scholar 

  51. Matsui, J., Fujiwara, K., Ugata, S., and Takeuchi, T., 2000, Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorhent. J. Chromatogr. A 889: 25–31.

    Article  Google Scholar 

  52. Sellergen, B., 1994, Direct drug determination by selective sample enrichment on an imprinted polymer. Anal. Chem. 66: 1578–1582.

    Article  Google Scholar 

  53. Piletsky, S.A., Alcock, S., and Turner, A.P.F., 2001, Molecular Imprinting: at the edge of the third millennium. TRENDS in Biotechnology 19: 9–12.

    Article  Google Scholar 

  54. Piletsky, S.A., Piletskaya, E.V., Sergeyeva, T.A., Panasyuk, T.L., and El’skaya, A.V., 1999, Molecularly imprinted self-assembled films with specificity to cholesterol. Sensors and Actuators B 66: 216–220.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Ulubayram, K. (2004). Molecularly Imprinted Polymers. In: Hasirci, N., Hasirci, V. (eds) Biomaterials. Advances in Experimental Medicine and Biology, vol 553. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-48584-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48584-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0988-9

  • Online ISBN: 978-0-306-48584-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics