Skip to main content

Prebiotic chemistry, artificial life, and complexity theory: What do they tell us about the origin of biological systems?

  • 2. Origins of Life and Evolution
  • Conference paper
  • First Online:
Advances in Artificial Life (ECAL 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 929))

Included in the following conference series:

  • 239 Accesses

Abstract

Although the origin of self-sustaining, autoreplicating systems capable of undergoing Darwinian evolution is still unknown, a research program based on the hypothesis of chemical and precellular evolution has provided a framework within which the abiotic synthesis of biochemical monomers and membrane components, the experimental study of replicative systems, and the interactions between different ribozymes and a potentially wide range of substrates including amino acids, can be incorporated into a coherent historical narrative of evolutionary events. The significance of mathematical models and computer-based simulations of autocatalytic cycles based on complexity theory to the study of the origin of life will be considerable enhanced when experimental evidence supporting them becomes available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bachmann, P. A., Luisi, P. L., and Lang, J. (1992) Nature 357: 57–59

    Google Scholar 

  • Cairns-Smith, A. G. (1982) Genetic Takeover and the Mineral Origins of Life (Cambridge University Press, Cambridge)

    Google Scholar 

  • Chyba, C. F., Thomas, P. J., and Sagan, C. (1990) Science 249: 366–373

    PubMed  Google Scholar 

  • Crick, F. H. C. (1968) Jour. Mol. Biol. 38, 367–379

    Google Scholar 

  • de Duve, Ch. (1995) Vital Dust: life as a cosmic imperative (Harper Collins Publ. Co., New York)

    Google Scholar 

  • Doudna, J. A. and Szostak, J. W. (1989) Nature 339: 519–522

    PubMed  Google Scholar 

  • Drobner, E., Huber, H., WÄchtershÄuser, G., Rose, D., and Stetter, K. O. (1990) Nature 346: 742–744

    Google Scholar 

  • Eigen, M. and Schuster, P. (1978) Naturwissenschaften 65: 341–369

    Google Scholar 

  • Ferris, J. P., Joshi, P. C., Edelson, E. H., and Lawless, J. M. (1978) J. Mol. Evol. 11: 293–311

    PubMed  Google Scholar 

  • Gesteland, R. F. and Atkins, J. F. (eds.) The RNA World (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY)

    Google Scholar 

  • Hong, J. I., Feng, Q., Rotello, V., and Rebek, J. Jr. (1992) Science 255: 848–850

    Google Scholar 

  • Illangasekare, M., Sanchez, G., Nickles, T., and Yarus, M. (1995) Science 267: 643–647

    Google Scholar 

  • Joyce, G. F., Schwartz, A. W., Orgel, L. E., and Miller, S. L. (1987) Proc. Natl. Acad. Sci. USA 84: 4398–4402

    PubMed  Google Scholar 

  • Kauffman, S. A. (1993) The Origins of Order: self-organization and selection in evolution (Oxford University Press, Oxford), 709 pp.

    Google Scholar 

  • Lazcano, A. (1994) In S. Bengtson (ed), Early Life on Earth: Nobel Symposium No. 84 (Columbia University Press, New York), 60–69

    Google Scholar 

  • Lazcano, A. and Miller, S. L. (1994) Jour. Mol. Evol. 39: 546–554

    Google Scholar 

  • Majerfeld, I. and Yarus, M. (1994) Nature Struct. Biol. 1: 287–289

    Google Scholar 

  • Miller, S. L. (1953) Science 117: 528–529

    PubMed  Google Scholar 

  • Morowitz, H. J. (1992) Beginnings of Cellular Life: metabolism recapitulates biogenesis (Yale University Press, New Haven)

    Google Scholar 

  • Nielsen, P. E., Egholm, M., Berg, R. H., and Buchardt, O. (1991) Science 254: 1497–1500

    Google Scholar 

  • Oparin, A. I. (1924) Proiskhodenie Zhisni (Moscovky Rabotchii, Moscow)

    Google Scholar 

  • Oparin, A. I. (1938) The Origin of Life (MacMillan, New York)

    Google Scholar 

  • Orgel, L. E. (1968) Jour. Mol. Biol. 38, 381–393

    Google Scholar 

  • Orgel, L. E. (1987) Cold Spring Harbor Symp. Quant. Biol. 52, 9–16

    PubMed  Google Scholar 

  • Orgel, L. E. (1992) Nature 358, 203–209

    Google Scholar 

  • Oro, J. (1960) Biochem. Biophys. Res. Comm. 2: 407–411

    Google Scholar 

  • Oro, J., Miller, S. L., Lazcano, A. (1990) Annu. Rev. Earth Planet. Sci. 18: 317–356

    Google Scholar 

  • Robertson, M. D. and Miller, S. L. (1995) Science (in press)

    Google Scholar 

  • Schopf, J. W. (1993) Science 260: 640–646

    PubMed  Google Scholar 

  • WÄchtershÄuser, G. (1988) Microbiol. Rev. 52, 452–484

    PubMed  Google Scholar 

  • Woese, C. R. (1967) The Genetic Code: the molecular basis for gene expression (Harper and Row, New York)

    Google Scholar 

  • Yarus, M. (1988) Biochemistry 28: 980–988

    Google Scholar 

  • Ycas, M. (1955) Proc. Natl. Acad. Sci. USA 41: 714–716

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Federico Morán Alvaro Moreno Juan Julián Merelo Pablo Chacón

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lazcano, A. (1995). Prebiotic chemistry, artificial life, and complexity theory: What do they tell us about the origin of biological systems?. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds) Advances in Artificial Life. ECAL 1995. Lecture Notes in Computer Science, vol 929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59496-5_292

Download citation

  • DOI: https://doi.org/10.1007/3-540-59496-5_292

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59496-3

  • Online ISBN: 978-3-540-49286-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics