Skip to main content

Artificial life and molecular evolutionary biology

  • Openning Lecture
  • Conference paper
  • First Online:
Advances in Artificial Life (ECAL 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 929))

Included in the following conference series:

Abstract

Artificial life is extending the scope of molecular evolutionary biology as it tries to complement natural life on earth by searching for systems with properties that are sufficient to allow for evolution. Evolution is characterized by specific forms of dynamics that are based on the capability of replication. RNA molecules form a toy universe calles the RNA world that shares many features with current scenarios of procaryotic life. Since RNA is able to unite the properties of genotypes (sequences) and phenotypes (spatial structures) within the same molecule, RNA sequence to structure mappings present the key to an understanding of evolutionary dynamics. Such mappings dealing with RNA secondary structures allow straightforward investigations assisted by computer simulation and mathematical analysis. The main result of these studies is summarized in the principle of shape space covering: only a small fraction of sequence space has to be searched in order to find a sequence that folds into a predefined structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Spiegelman, S.: An approach to the experimental analysis of precellular evolution. Quart.Rev.Biophys. 4 (1971) 213–253

    Google Scholar 

  2. Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58 (1971) 465–523

    PubMed  Google Scholar 

  3. Dayhoff, M.O., Park, C.M.: Cytochrome-c: Building a phylogenetic tree. In: Dayhoff, M.O., ed. Atlas of protein sequence and structure: Vol.4, pp. 7–16. National Biomedical Research Foundation: Silver Springs (Md.) 1969

    Google Scholar 

  4. Piccirilli, J.A., Krauch, T., Moroney, S.E., Benner, A.S.: Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343 (1990) 33–37

    Google Scholar 

  5. Szathmáry, E.: Four letters in the genetic alphabet: a frozen evolutionary optimum? Proc.R.Soc.Lond.B 245 (1991) 91–99

    Google Scholar 

  6. Wu, T., and Orgel, L.E.: Nonenzymatic template-directed synthesis on oligodeoxycytidylate sequences in hairpin oligonucleotides. J.Am.Chem.Soc. 114 (1992) 317–322

    Google Scholar 

  7. von Kiedrowski, G.: A self-replicating hexadeoxynucleotide. Angew. Chem.Int.Ed.Engl. 25 (1986) 932–935

    Google Scholar 

  8. Tjivikua, T., Ballester, P., Rebek, J., Jr.: A self-replicating system. J.Am.Chem.Soc. 112 (1990) 1249–1250

    Google Scholar 

  9. Nowick, J.S., Feng, Q., Tjivikua, T., Ballester, P., Rebek, J., Jr.: Kinetic studies and modeling of a self-replicating system. J.Am.Chem.Soc. 113 (1991) 8831–8839

    Google Scholar 

  10. Hong, J.-I., Feng, Q., Rotello, V., Rebek, J., Jr.: Competition, cooperation, and mutation: improving a synthetic replicator by light irradiation. Science 255 (1992) 848–850

    Google Scholar 

  11. Orgel, L.E.: Molecular replication. Nature 358 (1992) 203–209

    Google Scholar 

  12. Biebricher, C.K. and Eigen, M.: Kinetics of RNA replication by QΒ replicase. In: Domingo, E., Holland, J.J. and Ahlquist, P., eds. RNA Genetics. Vol.I: RNA directed virus replication, pp.1–21. CRC Press: Boca Raton (Fl.), 1988

    Google Scholar 

  13. Biebricher, C.K., Eigen, M., Gardiner Jr., W.C.: Kinetics of RNA replication: plus-minus asymmetry and double-strand formation. Biochemistry 23 (1984) 3186–3194

    Google Scholar 

  14. Sumper, M., Luce, R.: Evidence for de novo production of self-replicating and environmentally adapted RNA structures by bacteriophage QΒ replicase. Proc.Natl.Acad.Sci.USA 72 (1975) 162–166

    Google Scholar 

  15. Biebricher, C.K., Eigen, M., Luce, R.: Product analysis of RNA generated de novo by QΒ replicase. J.Mol.Biol. 148 (1981) 369–390

    Google Scholar 

  16. Biebricher, C.K., Eigen, M., Luce, R.: Template-free RNA synthesis by QΒ replicase Nature 321 (1986) 89–91

    PubMed  Google Scholar 

  17. Eigen, M., McCaskill, J., Schuster, P.: The molecular quasispecies — An abridged account. J.Phys.Chem. 92 (1988) 6881–6891

    Google Scholar 

  18. Eigen, M., McCaskill, J., Schuster, P.: The molecular quasispecies. Adv.Chem.Phys. 75 (1989) 149–263

    Google Scholar 

  19. Fontana, W., Konings, D.A.M., Stadler, P.F., Schuster, P.: Statistics of RNA secondary structures. Biopolymers 33 (1993) 1389–1404

    PubMed  Google Scholar 

  20. Fontana, W., Stadler, P.F., Bornberg-Bauer, E.G., Griesmacher, T., Hofacker, I.L., Tacker, M., Tarazona, P., Weinberger, E.D., Schuster, P.: RNA foling and combinatory landscapes. Phys.Rev.E. 47 (1993) 2083–2099

    Google Scholar 

  21. Bonhoeffer, S., McCaskill, J.S., Stadler, P.F., Schuster, P.: RNA multi-structure landscapes. Eur.Biophys.J. 22 (1993) 13–24

    Google Scholar 

  22. Tacker, M., Fontana, W., Stadler, P.F., Schuster, P.: Statistics of RNA melting kinetics. Eur.Biophys.J. 23 (1994) 29–38 23.

    Google Scholar 

  23. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Mh.Chem. 125 (1994) 167–188

    Google Scholar 

  24. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From seqeunces to shapes and back: a case study in RNA secondary structures. Proc.Roy.Soc.Lond.B255 (1994) 279–284

    Google Scholar 

  25. Grüner, W.: Doctoral Thesis. UniversitÄt Wien, 1994

    Google Scholar 

  26. Reidys, C.: Dotoral Thesis. Friedrich-Schiller-UniversitÄt Jena, 1995

    Google Scholar 

  27. Schuster, P., Stadler, P.F.: Landscapes: complex optimization problems and biopolymer structures. Computers Chem. 18 (1994) 295–324

    Google Scholar 

  28. Kauffman, S.A., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J.Theor.Biol. 128 (1987) 11–45

    Google Scholar 

  29. Fontana, W., Schuster, P.: A computer model of evolutionary optimization. Biophys.Chem. 26 (1987) 123–147

    Google Scholar 

  30. Fontana, W., Schnabl, W., Schuster, P.: Physical aspects of evolutionary optimization and adaptation. Phys.Rev.A 40 (1989) 3301–3321

    Google Scholar 

  31. Huynen, M., Fontana, W., Stadler, P.F.: Unpublished results. Santa Fe (N.M.), 1994

    Google Scholar 

  32. Weber, J., Reidys, C., Forst, C., Schuster, P.: Unpublished results. Jena (Germany), 1995

    Google Scholar 

  33. Schuster, P.: How to search for RNA structures. Theoretical concepts in evolutionary biotechnology. J.Biotechnology, in press 1995

    Google Scholar 

  34. Eigen, M., Schuster, P.: Stages of emerging life — Five principles of early organization. J.Mol.Evol. 19 (1985) 47–61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Federico Morán Alvaro Moreno Juan Julián Merelo Pablo Chacón

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schuster, P. (1995). Artificial life and molecular evolutionary biology. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds) Advances in Artificial Life. ECAL 1995. Lecture Notes in Computer Science, vol 929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59496-5_285

Download citation

  • DOI: https://doi.org/10.1007/3-540-59496-5_285

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59496-3

  • Online ISBN: 978-3-540-49286-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics