Skip to main content

Momentum-space electron densities and quantum molecular similarity

  • Chapter
  • First Online:
Molecular Similarity I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 173))

Abstract

This Chapter reviews a recent advance in the quantitative estimation of quantum molecular similarity. In this new approach, molecular similarity and dissimilarity indices are obtained from numerical comparisons of momentum-space electron densities. Many of the problems associated with more conventional position-space procedures are avoided and particular emphasis is placed on the variation of the long-range position-space electron density. The momentum-space approach is particularly suited to problems for which the molecular activity depends less on the details of the bonding topology than on features of the long-range slowly-varying valence electron density.

Momentum-space concepts are not, in general, familiar to the chemist and so we outline first the calculation of momentum-space electron densities, ρ(p), from ab initio wavefunctions. The form of ρ(p) for different molecules is discussed, using as examples (i) the ground state of H2, (ii) bond formation in BH+, and (iii) the π-orbitals in large conjugated polyenes.

The construction and the evaluation of similarity and dissimilarity indices based on ρ(p) are described in some detail. Examples are presented involving the comparison of (i) the total or total valence electron densities of two molecules, (ii) the densities associated with particular molecular fragments or localised molecular orbitals, and (iii) the densities of two molecular orbitals in the same molecule. Results are reported for the model series (a) CH3CH2CH3, CH3OCH3 and CH3SCH3, and (b) C-H and C-F bonds in hydrofluoromethanes. Finally, two studies involving larger systems are presented. In the first, momentum-space similarity indices are used to rationalise anti-HIV1 virology data for a group of phospholipids. The technique proves to have predictive value for such systems. In the second application, a structure-activity relationship is generated for the hyper-polarisabilities of a range of non-centrosymmetric 1,4-substituted benzene derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

8 References

  1. Williams BG (ed) (1977) Compton scattering. McGraw-Hill, New York

    Google Scholar 

  2. See for example: Brion CE (1986) Int J Quantum Chem 29: 1397

    Google Scholar 

  3. Coulson CA, Duncanson WE (1941) Proc Camb Philos Soc 37: 55, 67, 74, 397, 406

    Google Scholar 

  4. See for example: Epstein IR, Tanner AC (1977) In: Williams, New York; Rawlings DC, Davidson ER (1985) J Phys Chem 89: 969 and references therein

    Google Scholar 

  5. Johnson MA, Maggiora GM (eds) (1990) Concepts and applications of molecular similarity. Wiley, New York

    Google Scholar 

  6. Proceedings from the 1992 Beilstein symposium on similarity in organic chemistry (1992) J Chem Inf Comput Sci 32, no 6

    Google Scholar 

  7. Carbó R, Mezey PG (eds) Molecular similarity and reactivity: From quantum chemical to phenomenological approaches. Kluwer (in press)

    Google Scholar 

  8. See for example: Carbó R, Leyda L and Arnau M (1980) Int J Quant Chem 17: 1185; Carbó R, Domingo L1 (1987) Int J Quant Chem 32: 517; Carbó R, Calabuig B (1992) Int J Quant Chem 42: 1681, 1695

    Google Scholar 

  9. Ponec R, Strnad M (1991) J Phys Org Chem 4: 701; (1992) Int J Quant Chem 42: 501

    Google Scholar 

  10. Hodgkin EE, Richards WG (1987) Int J Quantum Chem Quantum Biology Symp 14: 105; Richards WG, Hodgkin EE (1988) Chem Br 24: 1141; see also Burt C, Richards WG (1990) J Comput-Aided Mol Design 4: 23

    Google Scholar 

  11. Duane-Walker P, Artera GA, Mezey PG (1991) J Comput Chem 12: 220

    Google Scholar 

  12. Cooper DL, Allan NL (1989) J Comput-Aided Mol Des 3: 253

    PubMed  Google Scholar 

  13. Cooper DL, Allan NL (1992) J Am Chem Soc 114: 4774

    Google Scholar 

  14. Allan NL, Cooper DL (1992) in Ref 6, p 587

    Google Scholar 

  15. Guest MF, Sherwood P (1992) GAMESS-UK User's guide and reference manual, revision B.0; SERC Daresbury Laboratory, UK

    Google Scholar 

  16. Stewart JJP (1990) J Comput-Aided Mol Des 4: 1

    PubMed  Google Scholar 

  17. Kaijser P, Smith VH Jr (1977) Adv Quant Chem 10: 37

    Google Scholar 

  18. See for example: Allan NL, Cooper DL (1986) J Chem Phys 84: 5594

    Google Scholar 

  19. Cooper DL, Allan NL (1987) J Chem Soc, Faraday Trans 2, 83: 449

    Google Scholar 

  20. Allan NL, Cooper DL (1987) J Chem Soc, Faraday Trans 2, 83: 1675

    Google Scholar 

  21. Cooper DL, Loades SD, Allan NL (1991) J Mol Struct (THEOCHEM), 229: 189

    Google Scholar 

  22. See, for example: Cooper DL, Gerratt J, Raimondi M (1991) Chem Revs 91: 929

    Google Scholar 

  23. Cooper DL, Allan NL, Grout PJ (1989) J Chem Soc, Faraday Trans 2, 85: 1519

    Google Scholar 

  24. Sag TW, Szekeres G (1964) Math Comput 18: 24553

    Google Scholar 

  25. Cioslowski J, Nanayakkara A (1993) J Am Chem Soc 115: 11213

    Google Scholar 

  26. Bader RFW (1987) Atoms in a molecule: A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  27. Dewar MJS, Rzepa HS (1978) J Am Chem Soc 100: 58

    Google Scholar 

  28. Pipek J, Mezey PG (1989) J Chem Phys 90: 4916

    Google Scholar 

  29. Cooper DL, Allan NL, Powell RL (1990) J Fluorine Chem 46: 317; 49: 421

    Google Scholar 

  30. Derwent RG, Volz-Thomas A, Prather MJ (1989) UNEP/WMO Scientific assessment of stratospheric ozone: Appendix, AFEAS Report, AFEAS, ch. 5, p 123

    Google Scholar 

  31. Hampson RF, Kurylo MJ, Sander SP (1989) UNEP/WMO Scientific assessment of stratospheric ozone: Appendix, AFEAS Report, AFEAS, ch 3, p 47

    Google Scholar 

  32. Cooper DL, Allan NL, McCulloch A (1990) Atoms Environ 24A: 2417, 2703; Cooper DL, Cunningham TP, Allan NL, McCulloch A (1990) Atmos Environ 26A: 1331

    Google Scholar 

  33. Cooper DL, Mort KA, Allan NL, Kinchington D, McGuigan C (1993) J Am Chem Soc 115: 12615

    Google Scholar 

  34. McGuigan C, O'Connor TJ, Swords B, Kinchington D (1991) AIDS 5: 1536

    PubMed  Google Scholar 

  35. Kinchington D, McGuigan C (submitted for publication)

    Google Scholar 

  36. Cheng L, Tam W, Stevenson SH, Meredith GR, Rikken G, Marder SR (1991) J Phys Chem 95: 10631

    Google Scholar 

  37. Matsuzawa N, Dixon DA (1992) Int J Quantum Chem 44: 497

    Google Scholar 

  38. Cooper DL, Mort KA, Allan NL, Measures PT, manuscript in preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Sen

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Allan, N.L., Cooper, D.L. (1995). Momentum-space electron densities and quantum molecular similarity. In: Sen, K. (eds) Molecular Similarity I. Topics in Current Chemistry, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58671-7_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-58671-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58671-5

  • Online ISBN: 978-3-540-49039-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics