Skip to main content

Hybrid Computational Intelligence Schemes in Complex Domains: An Extended Review

  • Conference paper
  • First Online:
Methods and Applications of Artificial Intelligence (SETN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2308))

Included in the following conference series:

Abstract

The increased popularity of hybrid intelligent systems in recent times lies to the extensive success of these systems in many real-world complex problems. The main reason for this success seems to be the synergy derived by the computational intelligent components, such as machine learning, fuzzy logic, neural networks and genetic algorithms. Each of these methodologies provides hybrid systems with complementary reasoning and searching methods that allow the use of domain knowledge and empirical data to solve complex problems. In this paper, we briefly present most of those computational intelligent combinations focusing in the development of intelligent systems for the handling of problems in real-world applications. We emphasize the appropriateness of hybrid computational intelligence techniques for dealing with specific problems, we try to point particularly suitable areas of application for different combinations of intelligent techniques and we briefly state advantages and disadvantages of the “hybrid” idea, seen as the next theoretical step in the evolving impact and success of artificial intelligence tools and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen Z. Computational Intelligence for Decision Support. CRC Press, 2000

    Google Scholar 

  2. Nilsson N. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, 1998

    Google Scholar 

  3. Zimmermann H-J., Tselentis G., Van Someren M., Dounias G. (Eds.). Advances in Computational Intelligence and Learning: Methods and Applications. Kluwer Ac. Publ., 2001

    Google Scholar 

  4. Zadeh L.A., Fuzzy Sets, Information Control 8, 338–353, 1965

    Article  MATH  MathSciNet  Google Scholar 

  5. Rosenblatt F., Two theorems of statistical separability in the perceptron, Mechanization of Thought Processes, London HM Stat.Office, 421–456

    Google Scholar 

  6. Widrow B. and Hoff M.E., Adaptive switching circuits, IRE WesternElectric Show and Convention Record — Part 4, pp 96–104, 1960

    Google Scholar 

  7. Werbos P., Beyond regression: new tools for predictions and analysis in the behavioral science, PhD Thesis, Harvard University, 1974

    Google Scholar 

  8. Holland J.H., Adaptation in Natural and Artificial Systems, Cambridge, MA:MIT Press, 1975

    Google Scholar 

  9. Koza J. R. 1992. Genetic Programming— On the Programming of Computers by Means of Natural Selection. The MIT Press.

    Google Scholar 

  10. Michalski R.S., Carbonell J.G., and Mitchell T.M.: Machine Learning: An Artificial Intelligence Approach, Morgan Kaufmann, 1983

    Google Scholar 

  11. Michalski R.S., Carbonell J.G., and Mitchell T.M.: Machine Learning: An Artificial Intelligence Approach, Vol. 2, Morgan Kaufmann, 1986

    Google Scholar 

  12. Kodratoff Y. and Michalski R.S.: Machine Learning: An Artificial Intelligence Approach, Vol. 3, Morgan Kaufmann, 1990

    Google Scholar 

  13. Mitchell T.M. Machine Learning. McGraw-Hill, New York, 1997

    MATH  Google Scholar 

  14. Kubat M., Bratco I. and Michalski R.S.: A Review of Machine Learning Methods, in Michalski R.S., Bratco I. and Kubat M. (eds), Machine Learning And Data Mining— Methods and Applications, Wiley, pp. 3–69, 1997

    Google Scholar 

  15. Rumelhart D E, McClelland J. L. and Hinton G. E., Parallel Distributed Processing vols l, 2, Cambridge, MA:MIT Press, 1986

    Google Scholar 

  16. Jacobs R.A. Increased rates of convergence through learning rate adaptation, Neural Networks Vol.1, 295–307, 1988

    Article  Google Scholar 

  17. Wasserman P. D., Neural Computing: Theory and Practice, N.Y: Van Nostrand Reinhold, 1989

    Google Scholar 

  18. Arabshahi P., Choi J. J., Marks R. J. and Caudell T. P., Fuzzy control of backpropagation Proc. l st IEEE lnt. Conf.on Fuzzy Systems, Fuzz-IEEE’92, 967–972, 1992

    Google Scholar 

  19. Wong F.S., Wang P.Z., Goh T.H., Quek B.K., Fuzzy neural systems for stock selection, Fianancial Analysts Journal 48:1, 61–64, 1992

    Google Scholar 

  20. Kuo R. I., Chen Y. T., Cohen P. H. and Kumara S., Fast convergence of error back propagation algorithm through fuzzy modeling, Intelligent Engineering Systems through Artificial Neural Networks, 239–244, 1993

    Google Scholar 

  21. Bonissone P. P., Badami V., Chiang K., Khedkar P., Marcelle K. and Schutten M., Industrial applications of fuzzy logic at General Electric Proc. IEEE 83, 450–465, 1995

    Google Scholar 

  22. Bonissone P. P., Khedkar P. and Chen Y., Genetic algorithms for automated tuning of fuzzy controllers: a transportation application Proc. 5th IEEE lnt. Conf. Fuzz-IEEE’96, 674–680, 1996

    Google Scholar 

  23. Duan J.-C., Chung F.-L., Cascaded Fuzzy Neural Network Model Based on Syllogistic Fuzzy Reasoning, in IEEE Trans. on Fuzzy Systems., Vol 9, No 2, April 2001, 293–306

    Article  Google Scholar 

  24. Wong H.-S., Guan L., A Neural Learning Approach for Adaptive Image Restoration Using a Fuzzy Model-Based Network Architecture, in IEEE Trans. on Neur.Net., Vol 12, No 3, May 2001, 516–531

    Article  Google Scholar 

  25. Shen J.-C., Fuzzy Neural Networks for Tuning PID Controller for Plans with Unterdamped Responses, in IEEE Trans. on Fuzzy Systems., Vol 9, No 2, April 2001, 333–342

    Article  Google Scholar 

  26. Lin F.-J., Wai R.-J., Hong C.-M., Hybrid Supervisory Control Using Recurrent Fuzzy Neural Network for Tracking Periodic Inputs, in IEEE Trans. on Neural Net., Vol 12, No 1, Jan-2001, 68–90.

    Article  Google Scholar 

  27. Lee S. C. and Lee E. T., Fuzzy sets and neural networks J. Cybernet. 4, 83–103, 1974

    Article  MathSciNet  Google Scholar 

  28. Takagi H., Fusion technology of fuzzy theory and neural networks-survey and future directions, Proc. lnt. Conf. on Fuzzy Logic and Neural Networks, Izuka’90, pp 13–26, 1990

    Google Scholar 

  29. Jang J. S. R., ANFIS: adaptive-network-based-fuzzy-inference-system IEEE Trans. Syst. Man Cybernet. SMC-23,665–85, 1993

    Google Scholar 

  30. Kawamura A., Watanabe N., Okada H. and Asakawa K. A., prototype of neuro-fuzzy cooperation systems Proc. 1st IEEE Int. Conf. on Fuzzy Systems, Fuzz-lEEE’92, 75–82, 1992

    Google Scholar 

  31. Bersini H., Nordvik J. P. and Bonarini A., A simple direct adaptive fuzzy controller derived from its neural equivalent, Proc. IEEE lnt. Corf. IEEE-ICNN’93, 345–350, 1993

    Google Scholar 

  32. Bersini H., Nordvik J. P. and Bonarini A., Comparing RBF and fuzzy inference systems on theoretical and practical basis, Proc. Int. Conf. on Artificial Neural Networks, 169–174, 1995

    Google Scholar 

  33. Russo M, Distributed Fuzzy Learning Using the MULTISOFT Machine, in IEEE Trans. on Neur.Net., Vol 12, No 3, May 2001, 475–484

    Article  Google Scholar 

  34. Zikidis K.C., Vasilakos A.V., ASAFES2:a novel, neuro-fuzzy architecture for fuzzy computing based on functional reasoning, Fuzzy Sets and Systems 83, 1996, 63–84

    Google Scholar 

  35. Studer L., Masulli F., Building a neuro-fuzzy system to efficiently forecast chaotic timeseries, Nuclear Instruments and Methods in Physics Research A 389, 1997, 264–267

    Article  Google Scholar 

  36. Nie J., Nonlinear time-series forecasting: A fuzzy-neural approach, Neurocomputing 16, 63–76, 1997

    Article  Google Scholar 

  37. Nauck D., Kruse R., Designing Neuro-Fuzzy Systems Through Backpropagations, in Witold Pedrydz (Ed.), Fuzzy Modeling — Paradigms and Practice, pp 203–231, Kluwer Academic Publishers, 1996

    Google Scholar 

  38. Nauck Detlef and Kruse Rudolf, NEFCLASS — a Neuro-Fuzzy approach for the classification of data, In K.M. George, Janice H. Carrol, Ed Deaton, Dave Oppenheim and Jim Hightower (Eds.), Applied Computing, 1995, ACM Symposium on Applied Computing, Nashville, Feb. 26–28, pages 461–465. ACM Press, New York, February 1995.

    Google Scholar 

  39. Tsakonas A., Dounias G., Decision making on noisy time-series data under a neurogenetic fuzzy rule-based system approach, in Proc. of 7th UK Workshop on Fuzzy Systems, 80–89,2000

    Google Scholar 

  40. Zimmermann H. G., Neuneier R., Siekmann S., Dichtl H., Modeling the German Stock Index DAX with Neuro-Fuzzy, EUFIT’96, Aachen, Germany, Sept. 2–5, pp. 2187–2190, 1996

    Google Scholar 

  41. Maniezzo V., Genetic evolution of the topology and weight distribution of neural networks, IEEE Trans. Neural Networks NN 5 39–53, 1994

    Article  Google Scholar 

  42. Patel M. J. and Maniezzo V., NN’s and GA’s: evolving co-operative behavior in adaptive learning agents, Proc. 1st IEEE Conf. on Evolutionary Computation, ICEC’94, pp 290–295, 1994

    Google Scholar 

  43. Montana D. J. and Davis L., Training feedforward neural networks using genetic algorithms, Proc. l I th lnt. Joint Conf. on Artificial Intelligence, IJCAI, 762–767, 1989

    Google Scholar 

  44. Kitano H., Empirical studies on the speed of convergence of neural networks training using genetic algorithms. Proc. 8th Natl Conf. on Artificial Intelligence, AAAI’90, 789–796, 1990

    Google Scholar 

  45. McInerney M. and Dhawan A. P., Use of genetic algorithms with backpropagation in training of feedforward neural networks, Proc. IEEE lnt. Conf. on Neural Networks, IEEEICNN’93, 203–208, 1993

    Google Scholar 

  46. Schaffer J. D., Whitley D. and Eshelman L. J., Combinations of genetic algorithms and neural networks: a survey of the state of the art, Proc. Int. Workshop on Combinations of Genetic Algorithms and Neural Networks, COGANN’92, pp 1–37, 1992

    Google Scholar 

  47. Shazly M.R.E., Shazly H.E.E., Forecasting currency prices using a genetically evolved neural network architecture, International Review of Financial Analysis, 8:1, 1999, 67–82

    Article  Google Scholar 

  48. Edwards D., Taylor N., Brown K., Comprehensive Evolution of Neural Networks, in Proc. of the 2001 UK Workshop of Computational Intelligence, University of Edinbourgh, 2001, 75–80

    Google Scholar 

  49. Montana D.J., Neural Network Weight Selection Using Genetic Algorithms, 1992

    Google Scholar 

  50. Sexton R.S., Gupta J.N.D., Comparative evaluation of genetic algorithm and backpropagation for training neural networks, Information Sciences 129, 2000, 45–49

    Article  MATH  Google Scholar 

  51. Yeun Y.-S., Lee K.-H., Yang Y.-S., Function approximation by coupling neural networks and genetic programming trees with oblique decision trees, Artif. Intell. in Eng. 13, 223–239, 1999

    Article  Google Scholar 

  52. D.J. Montana, "Strongly Typed Genetic Programming", Evolutionary Computation Vol 3:2, 1995

    Google Scholar 

  53. F. Gruau, "On Using Syntactic Constraints with Genetic Programming", in P.J. Angeline, K.E. Jinnear,Jr., "Advances in Genetic Programming", MIT,1996

    Google Scholar 

  54. T.D. Haynes, D.A. Schoenefeld, R.L. Wainwright, "Type Inheritance in Strongly Typed Genetic Programming", in P.J. Angeline, K.E. Jinnear,Jr., "Advances in Genetic Programming", MIT,1996

    Google Scholar 

  55. C.Z. Janikow, "A Methodology for Processing Problem Constraints in Genetic Programming", in Computers Math.Applic. Vol.32:8,pp 97–113, 1996

    Article  MATH  Google Scholar 

  56. C. Ryan, J.J. Collins, M. O’Neil, “Grammatical Evolution: Evolving Programs for an Arbitrary Language”, in W. Banzhaf, R. Poli, M. Schoenauer, T.C. Fogarty (Eds.), “Genetic Programming”, Lecture Notes in Computer Science, Springer, 1998

    Google Scholar 

  57. Cordon O., Herrera H. and Lozano M., A classified review on the combination fuzzy logic-genetic algorithms bibliography, Technical Report 95129, Department of Computer Science and AI, Universidad de Granada, 1995, http://decsai.ugr.es/difuso/tr.html

  58. Herrera F., Lozano M. and Verdegay J. L., Tackling fuzzy genetic algorithms, in G. Winter, J. Periaux, M. Galan and P. Cuestapages (eds.), Genetic Algorithms in Engineering and Computer Science, New York: Wiley, 167–189, 1995

    Google Scholar 

  59. Lee M. A. and Tagaki H., Integrating design stages of fuzzy systems using genetic algorithms, Proc. 2nd IEEE lnt. Conf, on FuzzySystems, Fuzz-IEEE’93, 1993

    Google Scholar 

  60. Herrera F. and Lozano M., Adaptive genetic algorithms based on fuzzy techniques, Proc. lnt. Conf. on Information Processing and Management of Uncertainty, IPMU’96,775–780, 1996

    Google Scholar 

  61. Lee M. A. and Tagaki H., Dynamic control of genetic algorithm using fuzzy logic techniques, Proc. 5th lnt. Conf. on Genetic Algorithms, lCGA’93, 76–83, 1993

    Google Scholar 

  62. Lee M. A., Automatic design and adaptation of fuzzy systems and genetic algorithms using soft computing techniques, PhD Thesis, University of California, Davis, 1994

    Google Scholar 

  63. Grefenstette J., Optimization of control parameters for genetic algorithms, IEEE Trans. Syst. Man Cybernet. SMC-16, 122–128, 1986

    Article  Google Scholar 

  64. De Jong K. A., An analysis of the behavior of a class of genetic adaptive systems, PhD Thesis, University of Michigan, 1975

    Google Scholar 

  65. Witold Pedrycz and Marek Reformat, Genetic Optimization with Fuzzy Coding, in Herrera F. and Verdegay J.L. (Eds), Genetic Algorithms and Soft Computing, Physica-Verlag, 1996, 51–67

    Google Scholar 

  66. Francisco Herrera and Manuel Lozano, Adaptation of Genetic Algorithm Parameters Based on Fuzzy Logic Controllers, in Herrera F. and Verdegay J.L. (Eds), Genetic Algorithms and Soft Computing, Physica-Verlag, 1996, 95–125

    Google Scholar 

  67. Herrera F., Lozano M., Adaptive Genetic Operators Based on Co-evolution with Fuzzy Behaviors, in IEEE Trans. on Evol.Comp., Vol 5, No 2, April 2001, 149–165

    Article  Google Scholar 

  68. Karr C. L., Design of an adaptive fuzzy logic controller using genetic algorithms, Proc. 4th Int. Conf. on Genetic Algorithms, ICGA’91, 450–456, 1991

    Google Scholar 

  69. Karr C. L., Genetic algorithms for fuzzy controllers. Al Expert 6, 27–33, 1991

    MathSciNet  Google Scholar 

  70. Karr C. L., Fuzzy control of pH using genetic algorithms, IEEE Trans. Fuzzy Syst. FS, 146–153, 1993

    Google Scholar 

  71. Herrera F., Lozano M. and Verdegay J. L., Tuning fuzzy logic control by genetic algorithms, Int. J. Approx. Reasoning 12, 299–315, 1995

    Article  MATH  MathSciNet  Google Scholar 

  72. Kinzel, J., Klawoon F. and Kruse R., Modifications of genetic algorithms for designing and optimizing fuzzy controllers, Proc. 1st IEEE Conf. on Evol. Computation, ICEC’94, 28–33, 1994

    Google Scholar 

  73. Takagi T. and Sugeno M., Fuzzy identification of systems and its applications to modeling and control, IEEE Trans.Syst. Man Cybernet. SMC-15, 116–132, 1985

    MATH  Google Scholar 

  74. Surmann H., Kanstein A. and Goser K., Self organizing and genetic algorithms for an automatic design of fuzzy control and decision systems, Proc. EUFIT’93, Aachen, 1993, pp 97–104, 1993

    Google Scholar 

  75. Zheng L., A practical guide to tune proportional and integral (PI) like fuzzy controllers, Proc. 1st IEEE Int.Conf. on Fuzzy Systems, Fuzz-IEEE’92, 633–640, 1992

    Google Scholar 

  76. Magdalena L. and Velasco J.R.,Fuzzy Rule-Based Controllers that Learn by Evolving their Knowledge Base, in Herrera F. and Verdegay J.L. (Eds), Genetic Algorithms and Soft Computing, Physica-Verlag 1996, 172–201

    Google Scholar 

  77. Lee M.A. and Takagi H., Hybrid Genetic-Fuzzy Systems for Intelligent Systems Design, in Herrera F. and Verdegay J.L. (Eds), Genetic Algorithms and Soft Computing, Physica-Verlag, 1996, 226–250

    Google Scholar 

  78. Hoffman F. and Pfister G., Learning of a Fuzzy Control Rule Base Using Messy Genetic Algorithms, in Herrera F. and Verdegay J.L. (Eds), Genetic Algorithms and Soft Computing, Physica-Verlag, 1996, 279–305

    Google Scholar 

  79. Gonzalez A. and Perez R., A Learning System of Fuzzy Control Rules Based on Genetic Algorithms, in Herrera F. and Verdegay J.L. (Eds), Genetic Algorithms and Soft Computing, Physica-Verlag, 1996, 202–225

    Google Scholar 

  80. Cordon O. and Herrera F., A Hybrid Genetic Algorithm-Evolution Strategy Process for Learning Fuzzy Logic Controller Knowledge Bases, in Herrera F. and Verdegay J.L. (Eds), Genetic Algorithms and Soft Computing, Physica-Verlag, 1996, 251–278

    Google Scholar 

  81. Jamei M., Mahfouf M., Linkens D.A., Rule-Base Generation via Symbiotic Evolution for a Mamdani-Type Fuzzy Control System, in Proc. of the 2001 UK Workshop of Computational Intelligence, University of Edinbourgh, 2001, 15–20

    Google Scholar 

  82. Surmann H., Genetic Optimization of Fuzzy Rule-Based Systems, in Herrera F. and Verdegay J.L. (Eds), Genetic Algorithms and Soft Computing, Physica-Verlag, 1996, 389–402

    Google Scholar 

  83. Schroder M., Klawonn F., Kruse R., Sequential Optimization of Multidimensional Controllers Using Genetic Algorithms and Fuzzy Situations, in Herrera F. and Verdegay J.L. (Eds), Genetic Algorithms and Soft Computing, Physica-Verlag, 1996, 419–444

    Google Scholar 

  84. Shimojima K., Kubota N., Fukuda T., Virus-Evolutionary Genetic Algorithm for Fuzzy Controller Optimization, in Herrera F. and Verdegay J.L. (Eds), Genetic Algorithms and Soft Computing, Physica-Verlag, 1996, 369–388

    Google Scholar 

  85. Glorennec P.Y., Constrained Optimization of FIS Using an Evolutionary Method, in Herrera F. and Verdegay J.L. (Eds), Genetic Algorithms and Soft Computing, Physica-Verlag, 349–368.

    Google Scholar 

  86. Linkens D.A., Okola H., Real time acquisition of fuzzy rules using genetic algorithms, Artificial Intelligence in Real-Time Control, 1992, 17, 335–339

    Google Scholar 

  87. Lee M.A., Saloman R., Hybrid evolutionary algorithms for fuzzy system design, Proc. 6th Int. Fuzzy Systems Assoc. World Congress, IFSA 95, Vol 1, 269–272, 1995

    Google Scholar 

  88. Pedrycz W., Genetic algorithms for learning in fuzzy relational structures, Fuzzy Sets and Systems, 69, 37–52, 1995

    Article  Google Scholar 

  89. Satyadas A. and KrishnaKumar K., EFM-based Controllers for Space Station Attitude Control: Application and Analysis, in Herrera F. and Verdegay J.L. (Eds), Genetic Algorithms and Soft Computing, Physica-Verlag, 1996, 152–171

    Google Scholar 

  90. Sakawa M., Kubota R., Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms, European Journal of Operational Research 120, 2000, 393–407

    Article  MATH  MathSciNet  Google Scholar 

  91. Alba E., Cotta C., Troya J.M., Evolutionary Design of Fuzzy Logic Controllers Using Strongly-Typed GP, 1996

    Google Scholar 

  92. Alba E., Aldana J.F., Troya J.M., Genetic Algorithms as Heuristics for Optimizing ANN Design, 1996

    Google Scholar 

  93. Tsakonas A., Dounias G., Axer H., von Keyserlingk D.G., Data Classification using Fuzzy Rule-Based Systems represented as Genetic Programming Type-Constrained Trees, in Proc. of the 2001 UK Workshop of Computational Intelligence, University of Edinbourgh, 2001, 162–168

    Google Scholar 

  94. Wang X.-Z., Yeung D.S., A Comparative Study on Heuristic Algorithms for Generating Fuzzy Decision Trees, in IEEE Trans. on SMC, Part B, Vol 31, No 2, Apr 01, 215–226, 2001

    Google Scholar 

  95. Dounias G. D. and Tsourveloudis N.C., Power Plant Fault Diagnosis Using a Fuzzy Knowledge-Based System, Engineering Intelligent Systems, CRL Publ., Vol. 3, No. 2, pp. 109–120, 1995

    Google Scholar 

  96. Quinlan J.R., Induction of Decision Trees. Machine Learning 1, 81–106, 1986

    Google Scholar 

  97. Quinlan J.R., C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann,1993

    Google Scholar 

  98. J.L. Castro, J.J. Castro-Schez, J.M. Zurita, Use of a fuzzy machine learning technique in the knowledge acquisition process, Fuzzy Sets and Systems, Vol. 123, No. 3, pp 307–320, 2001

    Article  MATH  MathSciNet  Google Scholar 

  99. Weber R., Fuzzy-ID3: A Class of Methods for Automatic Knowledge Acquisition, Proc. of the 2nd Int. Conference on Fuzzy Logic & Neural Networks, Iizuka, Japan, July 17–22, 1992, pp. 265–268.

    Google Scholar 

  100. Wang X-Z., Yeung D. S., and Tsang E.C.C.: A Comparative Study on Heuristic Algorithms for Generating Fuzzy Decision Trees, IEEE Trans. on Systems Man & Cybernetics, PART B: Cybernetics, Vol. 31, No. 2, Apr. 2001, pp. 215–226.

    Article  Google Scholar 

  101. Jouffe L.: Fuzzy Inference System Learning by Reinforcement Methods, IEEE Trans. on Systems Man & Cybernetics, PART C: Applications & Reviews, Vol. 28, No. 3, Aug. 1998, pp. 338–355.

    Article  Google Scholar 

  102. Nomikos, G. Dounias, G. Tselentis, K. Vemmos (2000): “Conventional vs. Fuzzy Modeling of Diagnostic Attributes for Classifying Acute Stroke Cases”, in ESIT-2000, European Symposium on Intelligent Techniques, Aachen, Germany, 14–15 September 2000, pp. 192–200.

    Google Scholar 

  103. Sette S., Boullart L., An implementation of genetic algorithms for rule based machine learning, Engineering Applications of Artificial Intelligence, 13, 2000, 381–390

    Article  Google Scholar 

  104. Nikolaev N.Y. and Iba H., Regularization Approach to Inductive Genetic Programming, IEEE Trans. on Evolutionary Computation, Vol. 5, No. 4, Aug. 2001, pp. 359–375.

    Article  Google Scholar 

  105. Dounias G., Tsakonas A., Hatas D., Michalopoulos M., Introducing Hybrid Computational Intelligence in Credit Management, submitted to the Int. Journal of “Managerial and Decision Economics”, Special Issue on Credit Management, Sept. 2001.

    Google Scholar 

  106. Weiss S.M., Indurkhya N. Predictive Data Mining: A Practical Guide. M. Kaufmann, 1998

    Google Scholar 

  107. Dounias G., Tselentis G., Moustakis V.S.:Feature selection in washing machines using inductive learning. Journal of Integrated Computer Aided Engineering, Vol. 8, No. 4, pp. 325–336., 2001

    Google Scholar 

  108. Nikolaev N.I., Slavov V., Inductive Genetic Programming with Decision Trees, Intelligent Data Analysis 2, 1998, 31–44

    Article  Google Scholar 

  109. Echauz J.and Vachtsevanos G.: Separating Order from Disorder in a Stock Index Using Wavelet Neural Networks, EUFIT’97, Aachen, Germany, Sept. 8–11, pp. 434–437., 1997

    Google Scholar 

  110. Ho D.W.C, Zhang P-A, and Xu J.: Fuzzy Wavelet Networks for Function Learning, IEEE Trans on Fuzzy Systems, Vol. 9, No.1, Feb. 2001, pp. 200–211.

    Article  Google Scholar 

  111. Li Xiaoli, Tso Shiu Kit: Real-Time Tool Condition Monitoring Using Wavelet Transforms and Fuzzy Techniques, IEEE Trans. on Systems Man & Cybernetics, Part C, Applications and Reviews, Vol. 30, No.3, Aug. 2000, pp. 352–357.

    Article  Google Scholar 

  112. Lawrence S., Giles C.L., Tsoi A.C., Back A.D., Face Recognition: A Hybrid Neural Network Approach, Technical Report, UMIACS-TR-96-16 and CS-TR-3608, Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, 1996

    Google Scholar 

  113. Back B., Laitinen T., Sere K., Neural Networks and Genetic Algorithms for Bankruptcy Predictions, Expert Systems with Applications 11, 1996, 407–413

    Article  Google Scholar 

  114. Jo H., Han I., Integration of Case-Based Forecasting, Neural Network, and Discriminant Analysis for Bankruptcy Prediction, Expert Systems with Applications, Vol 11, No 4, 1996, 415–422

    Article  Google Scholar 

  115. Shin T., Han I., Optimal signal multi-resolution by genetic algorithms to support artificial neural networks for exchange-rate forecasting, Expert Systems with Applications 18, 257–269

    Google Scholar 

  116. Tsakonas A., Dounias G. and Tselentis G., "Using Fuzzy Rules in Multilayer Perceptron Neural Networks for Multiresolution Processed Signals: A Real World Application in Stock Exchange Market",in Proc. of Symposium on Comput. Intelligence and Learning, CoIL 2000, 154–170.

    Google Scholar 

  117. A. Tsakonas, G. Dounias and A. Merikas, The Role of Genetic Algorithms and Wavelets in Computational Intelligence-based Decision Support for Stock Exchange Daily Trading,in Proc. of VII Congress of SIGEF, 195–208, 2000

    Google Scholar 

  118. Fu L.: Knowledge Discovery by Inductive Neural Networks, IEEE Trans. on Knowledge and Data Engineering, Vol. 11, No. 6, Nov/Dec 1999, pp. 992–998

    Article  Google Scholar 

  119. Renders J. M. and Bersini H., Hybridizing genetic algorithms with hilt climbing methods for global optimization: two possible ways, Proc. 1 st IEEE Conf. on Evol. Comput.,,ICEC’94, 312–317, 1994

    Google Scholar 

  120. Renders J. M. and Flasse S. P., Hybrid methods using genetic algorithms for global optimization, IEEE Trans. Syst. Man Cybernet. SMC-26 243–258, 1976

    Article  Google Scholar 

  121. Dahal K.P., Burt G.M., McDonald J.R., Moyes A., A Case Study of Scheduling Storage Tanks Using a Hybrid Genetic Algorithm, in IEEE Trans. on Evol.Comp., Vol 5, No 3, June 2001, 283–294

    Article  Google Scholar 

  122. Kazarlis S.A., Papadakis S.E., Theocharis J.B., Petridis V., Microgenetic Algorithms as Generalized Hill-Climbing Operators for GA Optimization, in IEEE Trans. on Evol.Comp., Vol 5, No 3, 204–217, 2001

    Article  Google Scholar 

  123. Folino G., Pizzuti C., Spezzano G., Parallel Hybrid Method for SAT That Couples Genetic Algorithms and Local Search, in IEEE Trans. on Evol.Comp., Vol 5, No 4, August 2001, 323–334

    Article  Google Scholar 

  124. Stroud P.D., Kalman-Extended Genetic Algorithm for Search in Nonstationary Environments with Noisy Fitness Evaluations, in IEEE Trans. on Evol. Comp., Vol 5, No 1, Feb 01, 66–77, 2001

    Article  Google Scholar 

  125. Bolte A., Thonemann U.W., Optimizing simulated annealing schedules with genetic programming, European Journal of Operational Reasearch 92, 1996, 402–416

    Article  Google Scholar 

  126. Kojima F., Kubota N., Hashimoto S., Identification of crack profiles using genetic programming and fuzzy inference, Journal of Materials Processing Technology 108, 2001, 263–267

    Article  Google Scholar 

  127. Pena-Renes C.A., Sipper M., Evolutionary computation in medicine: an overview, Artificial Intelligence in Medicine, 19, 2000, 1–23

    Article  Google Scholar 

  128. Wong B.K., Selvi Y., Neural Network applications in finance: A review and analysis of literature (1990-1996), Information and Management 34,1998, 129–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsakonas, A., Dounias, G. (2002). Hybrid Computational Intelligence Schemes in Complex Domains: An Extended Review. In: Vlahavas, I.P., Spyropoulos, C.D. (eds) Methods and Applications of Artificial Intelligence. SETN 2002. Lecture Notes in Computer Science(), vol 2308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46014-4_44

Download citation

  • DOI: https://doi.org/10.1007/3-540-46014-4_44

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43472-6

  • Online ISBN: 978-3-540-46014-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics