Skip to main content

Multiple Access Communications Using Combinatorial Designs

  • Chapter
  • First Online:
Theoretical Aspects of Computer Science (TACSci 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2292))

Included in the following conference series:

  • 692 Accesses

Abstract

In the past century, combinatorial designs have had substantial application in the statistical design of experiments and in the theory of error-correcting codes. Applications in experimental and theoretical computer science have emerged more recently, along with connections to the theory of cryptographic communication. This paper focuses on applications of designs in multiple access communications, in particular to balanced methods of sharing resources such as communications hardware, time, and bandwidth. The theory of combinatorial designs continues to grow, in part as a consequence of the variety of these applications and the increasing depth of the connections with challenging problems on designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Alon, Expanders, sorting in rounds and superconcentrators of limited depth, Proceedings of the Seventeenth ACM Symposium on the Theory of Computing (1985) 98–102.

    Google Scholar 

  2. C. Argon and H. Farooq Ahmad, Optimal optical orthogonal code design using difference sets and projective geometry, Optics Communications 118 (1995) 505–508.

    Article  Google Scholar 

  3. G. E. Atkin and H. P. Corrales, An efficient modulation/coding scheme for MFSK systems on bandwidth controlled channels, IEEE Transactions on Sel. Areas Communications 7 (1989) 1396–1401.

    Article  Google Scholar 

  4. G. E. Atkin, D. A. Fares and H. P. Corrales, Codedm ultipulse position modulation in a noisy optical channel, Microwave Optical Technology Letters 2 (1989) 336–340.

    Article  Google Scholar 

  5. B. E. Aupperle and J. F. Meyer, Fault-tolerant BIBD networks, Proceedings of the Eighteenth International Symposium on Fault Tolerant Computing IEEE, Piscataway NJ, 1988, pp. 306–311.

    Google Scholar 

  6. D. J. Balding and D. C. Torney, Optimal pooling designs with error detection, Journal of Combinatorial Theory (A) 74 (1996) 131–140.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. J. Balding and D. C. Torney, The design of pooling experiments for screening a clone map, Fungal Genetics and Biology 21 (1997) 302–307.

    Article  Google Scholar 

  8. S. Ball, A. Blokhuis and F. Mazzocca, Maximal arcs in Desarguesian planes of odd order do not exist, Combinatorica 17 (1997) 31–41.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Barlotti, Su {k-n}-archi di un piano lineare finito, Boll. Un. Mat. Ital. 11 (1956) 553–556.

    MATH  MathSciNet  Google Scholar 

  10. T. Berger and J. W. Mandell, Bounds on the efficiency of two-stage group testing, preprint, Cornell University, 1998.

    Google Scholar 

  11. T. Berger, N. Mehravari, D. Towsley and J. Wolf, Random multiple-access communications andgroup testing, IEEE Transactions on Communications 32 (1984) 769–778.

    Article  Google Scholar 

  12. E. Berkovich and S. Berkovich, A combinatorial architecture for instruction-level parallelism, Microprocessors and Microsystems 22 (1998) 23–31.

    Article  Google Scholar 

  13. J. C. Bermond, J. BondandS. Djelloul, Dense bus networks of diameter 2, Interconnection Networks and Mapping and Scheduling Parallel Computations (D. F. Hsu, A. L. Rosenberg and D. Sotteau; eds.) American Mathematics Society, Providence RI, 1994, pp. 9–16.

    Google Scholar 

  14. J. C. Bermond, J. Bond, M. Paoli and C. Peyrat, Graphs and interconnection networks: diameter and vulnerability, Surveys in Combinatorics 1983 (E. K. Lloyd; ed.) Cambridge University Press, Cambridge, 1983, pp. 1–30.

    Google Scholar 

  15. J. C. Bermond, J. Bondand J. F. Saclé, Large hypergraphs of diameter 1, Graph Theory and Combinatorics (B. Bollobás; ed.) Academic Press, London, 1984, pp. 19–28.

    Google Scholar 

  16. J.-C. Bermondand F. Ö. Ergincan, Bus interconnection networks, Discrete Applied Mathematics 68 (1996) 1–15.

    Article  MathSciNet  Google Scholar 

  17. J.-C. Bermond, L. Gargano, S. Perennes, A. Rescigno, and U. Vaccaro, Efficient collective communication in all-optical networks, Lecture Notes in Computer Science 1099 (1996), 574–585.

    Google Scholar 

  18. J.-C. Bermond, C. Huang, A. Rosa, and D. Sotteau, Decompositions of complete graphs into isomorphic subgraphs with five vertices, Ars Combinatoria 10 (1980), 211–254.

    MATH  MathSciNet  Google Scholar 

  19. Th. Beth, D. Jungnickel and H. Lenz, Design Theory Cambridge University Press, Cambridge, 1986.

    MATH  Google Scholar 

  20. J. Bierbrauer, Small islands, Extremal problems for finite sets (Visegrád, 1991), Bolyai Soc. Math. Stud., 3, János Bolyai Math. Soc., Budapest, 1994, pp. 93–110.

    Google Scholar 

  21. C. M. Birdand A. D. Keedwell, Design andapplications of optical orthogonal codes—a survey Bulletin of the Institute for Combinatorics and its Applications 11 (1994) 21–44.

    Google Scholar 

  22. S. Bitan and T. Etzion, On constructions for optimal optical orthogonal codes, Lecture Notes in Computer Science 781 (1994) 111–125.

    Google Scholar 

  23. W. J. Bruno, D. J. Balding, E. H. Knill, D. Bruce, C. Whittaker, N. Doggett, R. Stallings and D. C. Torney, Design of efficient pooling experiments, Genomics 26 (1995) 21–30.

    Article  Google Scholar 

  24. M. Buratti, A powerful methodfor constructing difference families andoptimal optical orthogonal codes Designs Codes and Cryptography 5 (1995) 13–25.

    Article  MATH  MathSciNet  Google Scholar 

  25. Y. M. Chee, C. J. Colbourn and A. C. H. Ling, Weakly union-free twofoldtriple systems, Annals Combinatorics 1 (1997) 215–225.

    Article  MATH  MathSciNet  Google Scholar 

  26. K. Chen, G. Ge and L. Zhu, Starters andrelatedco des, Journal of Statistical Planning and Inference 86 (2000), 379–395.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. L. Chiu and E. H. Modiano, Traffic grooming algorithms for reducing electronic multiplexing costs in WDM ring networks, Journal of Lightwave Technology 18 (2000) 2–12.

    Google Scholar 

  28. F. R. K. Chung, Zone-balancednet works andblo ck designs, Bell System Technical Journal 57 (1978) 2957–2981.

    MathSciNet  Google Scholar 

  29. F. R. K. Chung, On concentrators, superconcentrators, generalizers andnonblocking networks, Bell System Technical Journal 58 (1979) 1765–1777.

    MATH  MathSciNet  Google Scholar 

  30. F. R. K. Chung, On switching networks andblo ck designs II, Bell System Technical Journal 59 (1980) 1165–1173.

    MATH  MathSciNet  Google Scholar 

  31. F. R. K. Chung, J. A. Salehi andand V. K. Wei, Optical orthogonal codes: design, analysis andapplications, IEEE Transactions on Information Theory 35 (1989) 595–604. Correction: IEEE Transactions on Information Theory 38 (1992) 1429.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. B. Cohen and C. J. Colbourn, Steiner triple systems as multiple erasure correcting codes in disk arrays, Proceedings of IPCCC 2000 (19th IEEE International Conference on Performance,Computing and Communications), 2000, pp. 288–294.

    Google Scholar 

  33. M. B. Cohen and C. J. Colbourn, Optimal andp essimal orderings of Steiner triple systems in disk arrays, LATIN 2000 (Punta del Este, Uruguay), Lecture Notes in Computer Science 1776 (2000), 95–104.

    Google Scholar 

  34. C. J. Colbourn, Weakly union-free maximum packings, Annals Combinatorics 3 (1999), 43–52.

    Article  MATH  MathSciNet  Google Scholar 

  35. C. J. Colbourn, Projective planes andcongestion-free networks, preprint, University of Vermont, 1998.

    Google Scholar 

  36. C. J. Colbourn and J. H. Dinitz (editors), CRC Handbook of Combinatorial Designs CRC Press, Boca Raton FL, 1996.

    MATH  Google Scholar 

  37. C. J. Colbourn, J. H. Dinitz, and D. R. Stinson, Applications of combinatorial designs to communications, cryptography, and networking, Surveys in Combinatorics 1999 (J.D. Lamb and D.A. Preece; eds.), Cambridge University Press, pp. 37–100.

    Google Scholar 

  38. C. J. Colbourn and A. C. H. Ling, Quorums from difference covers, Information Processing Letters, to appear.

    Google Scholar 

  39. C. J. Colbourn and P. C. van Oorschot, Applications of combinatorial designs in computer science, ACM Computing Surveys 21 (1989) 223–250.

    Article  Google Scholar 

  40. C. J. Colbourn and A. Rosa, Triple Systems Oxford University Press, Oxford, 1999.

    MATH  Google Scholar 

  41. C. J. Colbourn and S. Zhao, Maximum Kirkman signal sets for synchronous unipolar multi-user communication systems, Designs, Codes and Cryptography 20 (2000), 219–227.

    Article  MATH  MathSciNet  Google Scholar 

  42. M.J. Colbourn and R.A. Mathon, On cyclic Steiner 2-designs, Annals of Discrete Mathematics 7 (1980), 215–253.

    Article  MATH  MathSciNet  Google Scholar 

  43. D. Coppersmith and J. B. Shearer, New bounds for union-free families of sets, Electron. Journal of Combinatorics 5 (1998) #R39.

    MathSciNet  Google Scholar 

  44. W. W. M. Dai, Y. Kajitani and Y. Hirata, Optimal single hop multiple bus networks, Proceedings of the 1993 IEEE International Symposium on Circuits and Systems IEEE, Piscataway NJ, 1993, pp. 2541–2544.

    Google Scholar 

  45. R. H. F. Denniston, Some maximal arcs in finite projective planes, Journal of Combinatorial Theory 6 (1969) 317–319.

    Article  MATH  MathSciNet  Google Scholar 

  46. J. H. Dinitz and D. R. Stinson (editors), Contemporary Design Theory: A Collection of Surveys John Wiley & Sons, New York, 1992.

    MATH  Google Scholar 

  47. J. H. Dinitz and D. R. Stinson, Room squares andrelatedd esigns, in [46], 137–204.

    Google Scholar 

  48. R. Dorfman, The detection of defective members of a large population, Annals of Mathematical Statistics 14 (1943) 436–440.

    Article  Google Scholar 

  49. D. Z. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications World Scientific, Singapore, 1993.

    Google Scholar 

  50. A. D'yachkov, V. Rykov and A. M. Rashad, Superimposed distance codes, Problems Control and Information Theory 18 (1989) 237–250.

    MathSciNet  Google Scholar 

  51. P. Erdős, P. Frankl and Z. Fűredi, Families of finite sets in which no set is covered by the union of two others, Journal of Combinatorial Theory (A) 33 (1982) 158–166.

    Article  Google Scholar 

  52. D. A. Fares, Concatenatedco ding for multipulse signaling in noisy optical channels, Microwave Optical Technology Letters 4 (1991) 359–361.

    Article  Google Scholar 

  53. D. A. Fares, W. H. Abul-Shohoud, N. A. Raslan and M. A. Nassef, βmax detection of multipulse signaling in noisy optical channels, Microwave Optical Technology Letters 5 (1992) 269–273.

    Article  Google Scholar 

  54. P. Frankl and Z. Fűredi, A new extremal property of Steiner triple systems, Discrete Mathematics 48 (1984) 205–212.

    Article  MATH  MathSciNet  Google Scholar 

  55. Z. Fűredi, Maximum degree and fractional matchings in uniform hypergraphs, Combinatorica 1 (1981) 155–162.

    Article  MathSciNet  Google Scholar 

  56. A. Ghafoor, T. R. Bashkow and I. Ghafoor, Bisectional fault-tolerant communication architecture for supercomputer systems, IEEE Transactions on Computers 38 (1989) 1425–1446.

    Article  Google Scholar 

  57. J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, 2nd Ed. Oxford University Press, Oxford, 1998.

    MATH  Google Scholar 

  58. J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces, Journal of Statistical Planning and Inference 72 (1998) 355–380.

    Article  MATH  MathSciNet  Google Scholar 

  59. D. R. Hughes and F. C. Piper, Projective Planes Springer Verlag, New York, 1973.

    MATH  Google Scholar 

  60. W. H. Kautz and R. R. Singleton, Nonrandom binary superimposedco des, IEEE Transactions on Information Theory 10 (1964) 363–377.

    Article  MATH  Google Scholar 

  61. J. Kilian, S. Kipnis and C. E. Leiserson, The organization of permutation architectures with bussedin terconnections, IEEE Transactions on Computers 39 (1990) 1346–1358.

    Article  Google Scholar 

  62. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes North-Holland, Amsterdam, 1978.

    Google Scholar 

  63. S. V. Maric and V. K. N. Lau, Multirate fiber-optic CDMA: System design and performance analysis, Journal of Lightwave Technology 16 (1998) 9–17.

    Article  Google Scholar 

  64. S. V. Maric, O. Moreno and C. Corrada, Multimedia transmission in fiber-optic LANs using optical CDMA, Journal of Lightwave Technology 14 (1996) 2149–2153.

    Article  Google Scholar 

  65. M. D. Mickunas, Using projective geometry to design bus connection networks, Proceedings of the Workshop on Interconnection Networks for Parallel and Distributed Processing 1980, pp. 47–55.

    Google Scholar 

  66. D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments John Wiley & Sons, New York, 1971.

    MATH  Google Scholar 

  67. C.A. Rodger, Graph decompositions, Le Matematiche 45 (1990), 119–140.

    MATH  MathSciNet  Google Scholar 

  68. V. Rödl, On a packing and covering problem, European J. Combin. 6 (1985), 69–78.

    MATH  MathSciNet  Google Scholar 

  69. M. Ruszinkó, On the upper boundof the size of the r-cover-free families, Journal of Combinatorial Theory (A) 66 (1994) 302–310.

    Article  MATH  Google Scholar 

  70. J. A. Salehi, Code division multiple-access techniques in optical fibre networks-part I: Fundamental principles, IEEE Transactions on Information Theory 37 (1989) 824–833.

    MathSciNet  Google Scholar 

  71. J.M. Simmons, E.L. Goldstein, and A.A.M. Saleh, Quantifying the benefit of wavelength add-drop in WDM rings with distance-independent and dependent traffic, J. Lightwave Technology 17 (1999), 48–57.

    Article  Google Scholar 

  72. D. R. Stinson, Combinatorial designs and cryptography, Surveys in Combinatorics, 1993 (K. Walker; ed.) Cambridge University Press, London, 1993, pp. 257–287.

    Google Scholar 

  73. D. R. Stinson, Tran van Trung and R. Wei, Secure frameproof codes, key distribution patterns, group testing algorithms, andrelatedstructures, Journal of Statistical Planning and Inference 86 (2000), 595–617.

    Article  MATH  MathSciNet  Google Scholar 

  74. D. R. Stinson and R. Wei, Combinatorial properties andconstructions of traceability schemes andframepro of codes, SIAM Journal of Discrete Mathematics 11 (1998) 41–53.

    Article  MATH  MathSciNet  Google Scholar 

  75. D. R. Stinson, R. Wei andL. Zhu, Some new bounds for cover-free families, Journal of Combinatorial Theory (A) 90 (2000) 224–234.

    Article  MATH  MathSciNet  Google Scholar 

  76. L. Teirlinck, Non-trivial t-designs exist for all t, Discrete Mathematics 65 (1987), 345–356.

    Article  MathSciNet  Google Scholar 

  77. F. Vakil and M. Parnes, On the structure of a class of sets useful in nonadaptive group testing, Journal of Statistical Planning and Inference 39 (1994) 57–69.

    Article  MATH  MathSciNet  Google Scholar 

  78. P.-J. Wan, Multichannel Optical Networks: Network Theory and Applications, Kluwer Academic Press, 1999.

    Google Scholar 

  79. D. Wiedemann, Cyclic difference covers through 133, Congressus Numerantium 90 (1992) 181–185.

    MathSciNet  Google Scholar 

  80. R.M. Wilson, An existence theory for pairwise balancedd esigns I: Composition theorems andmorphisms, Journal of Combinatorial Theory (A) 13 (1971), 220–245.

    Article  Google Scholar 

  81. R.M. Wilson, An existence theory for pairwise balancedd esigns II. The structure of PBD-closedsets andthe existence conjectures, Journal of Combinatorial Theory (A) 13 (1972), 246–273.

    Article  MATH  Google Scholar 

  82. R.M. Wilson, An existence theory for pairwise balancedd esigns III: A proof of the existence conjectures, Journal of Combinatorial Theory (A) 18 (1975), 71–79.

    Article  MATH  Google Scholar 

  83. J. K. Wolf, Born again group testing: multiaccess communications, IEEE Transactions on Information Theory IT-31 (1985) 185–191.

    Article  Google Scholar 

  84. G. C. Yang, Some new families of optical orthogonal codes for code-division multiple-access fibre-optic networks, IEEE Transactions on Communications 142 (1995) 363–368.

    Google Scholar 

  85. R. Yao, T. Chen and T. Kang, An investigation of multibus multiprocessor systems, Acta Electron. Sinica 18 (1990) 125–127.

    Google Scholar 

  86. B. Yener, Y. Ofek and M. Yung, Combinatorial design of congestion-free networks, IEEE/ACM Transactions on Networking 5 (1997) 989–1000.

    Article  Google Scholar 

  87. J. X. Yin, Some combinatorial constructions for optical orthogonal codes, Discrete Mathematics 185 (1998) 201–219.

    Article  MATH  MathSciNet  Google Scholar 

  88. S. Zhao, Application of BIBDs in MT-MFSK signal set design for multiplexing bursty sources, PhD thesis, University of Technology Sydney, 1998.

    Google Scholar 

  89. S. Zhao, K. W. Yates and K. Yasukawa, Application of Kirkman designs in joint detection multiple access schemes, Proceedings of the International Symposium on Spread Spectrum Techniques and Applications 2 (1996) 857–861.

    Article  Google Scholar 

  90. S. Q. Zheng, Sparse hypernetworks basedon Steiner triple systems, Proceedings of the 1995 International Conference on Parallel Processing IEEE, Piscataway NJ, 1995, pp. I.92–I.95.

    Google Scholar 

  91. S. Q. Zheng, An abstract model for optical interconnection networks, Parallel Computing Using Optical Interconnections (K. Li, Y. Pan and S. Q. Zheng; eds.) Kluwer Academic, Norwell, MA, 1998, pp. 139–162.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Colbourn, C.J. (2002). Multiple Access Communications Using Combinatorial Designs. In: Khosrovshahi, G.B., Shokoufandeh, A., Shokrollahi, A. (eds) Theoretical Aspects of Computer Science. TACSci 2000. Lecture Notes in Computer Science, vol 2292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45878-6_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45878-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43328-6

  • Online ISBN: 978-3-540-45878-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics