Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 576))

Abstract

Energetic particles, traditionally called Cosmic Rays, were discovered nearly a hundred years ago, and their origin is still uncertain. Their main constituents are the normal nuclei as in the standard cosmic abundances of matter, with some enhancements for the heavier elements; there are also electrons, positrons and antiprotons. Today we also have information on isotopic abundances, which show some anomalies, as compared with the interstellar medium. And there is antimatter, but no anti-nuclei. The known spectrum extends over energies from a few hundred MeV to 300 EeV (= 3×1020 eV), and shows few clear spectral signatures: There is a small spectral break near 5 × 1015 eV, commonly referred to as the knee, where the spectrum turns down; there is another spectral break near 3×1018 eV, usually called the ankle, where the spectrum turns up again. Up to the ankle the cosmic rays are usually interpreted as originating from supernova explosions, i.e. those cosmic ray particles are thought to be Galactic in origin; however, the details are not clear. We do not know what the origin of the knee is, and what physical processes can give rise to particle energies in the energy range from the knee to the ankle. The particles beyond the ankle have to be extragalactic, it is usually assumed, because the Larmor radii in the Galactic magnetic field are too large; this argument could be overcome if those particles were very heavy nuclei as Fe, an idea which appears to be inconsistent, however, with the airshower data immediately above the energy of the ankle. Due to interaction with the cosmic microwave background (CMB), a relic of the Big Bang, there is a strong cut-off expected near 50 EeV (=5×1019 eV), which is, however, not seen; this expected cuto. is called the GZK-cuto. after its discoverers, Greisen, Zatsepin and Kuzmin. The spectral index α is near 2.7 below the knee, near 3.1 above the knee, and again near 2.7 above the ankle, where this refers to a differential spectrum of the form E in numbers. The high energy cosmic rays beyond the GZK-cuto. are the challenge to interpret. We will describe the various approaches to understand the origin and physics of cosmic rays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. V. F. Hess: Phys. Z. 13, 1084 (1912)

    Google Scholar 

  2. W. Kohlhörster: Phys. Z. 14, 1153 (1913)

    Google Scholar 

  3. D. J. Bird, et al.: Phys. Rev. Lett. 71, 3401 (1993) D. J. Bird, et al.: Astrophys. J. 424, 491 (1994) D. J. Bird, et al.: Astrophys. J. 441, 144 (1995)

    Article  ADS  Google Scholar 

  4. See, e.g., M. A. Lawrence, R. J. O. Reid, A. A. Watson: J. Phys. G Nucl. Part. Phys. 17, 733 (1991), and references therein see also http://ast.leeds.ac.uk/haverah/hav-home.html

    Article  ADS  Google Scholar 

  5. N. Hayashida, et al.: Phys. Rev. Lett. 73, 3491 (1994) S. Yoshida, et al.: Astropart. Phys. 3, 105 (1995) M. Takeda, et al.: Phys. Rev. Lett. 81, 1163 (1998) see also http://icrsun.icrr.u-tokyo.ac.jp/as/project/agasa.html

    Article  ADS  Google Scholar 

  6. Proc. International Symposium on Astrophysical Aspects of the Most Energetic Cosmic Rays, eds. M. Nagano and F. Takahara (World Scientific, Singapore, 1991)

    Google Scholar 

  7. Proc. of International Symposium on Extremely High Energy Cosmic Rays: Astrophysics and Future Observatories, ed. M. Nagano (Institute for Cosmic Ray Research, Tokyo, 1996)

    Google Scholar 

  8. N. N. Efimov, et al.: Ref. [6], p. 20 B. N. Afnasiev: in Ref. [7], p. 32.

    Google Scholar 

  9. J. Linsley: Phys. Rev. Lett. 10, 146 (1963) J. Linsley: Proc. 8th International Cosmic Ray Conference 4, 295 (1963)

    Article  ADS  Google Scholar 

  10. R. G. Brownlee, et al.: Can. J. Phys. 46, S259 (1968) M. M. Winn, et al.: J. Phys. G 12, 653 (1986) see also http://www.physics.usyd.edu.au/hienergy/sugar.html

    Google Scholar 

  11. G. Cocconi: Nuovo Cimento, 10th ser. 3, 1433 (1956)

    Article  Google Scholar 

  12. K. Greisen: Phys. Rev. Lett. 16, 748 (1966)

    Article  ADS  Google Scholar 

  13. G. T. Zatsepin, V. A. Kuzmin, Pis’ma Zh. Eksp. Teor. Fiz. 4, 114 (1966) [JETP. Lett. 4, 78 (1966)]

    ADS  Google Scholar 

  14. AMS collaboration: Phys. Lett. B490, 27 (2000) AMS collaboration: Phys. Lett. B494, 193 (2000)

    ADS  Google Scholar 

  15. S. C. Corbató, et al.: Nucl. Phys. B (Proc. Suppl.) 28B, 36 (1992) D. J. Bird, et al., in Ref. [16], Vol. 2, 504; Vol. 1, 750 M. Al-Seady, et al., in Ref. [7], p. 191 see also http://hires.physics.utah.edu/

    ADS  Google Scholar 

  16. J. W. Cronin: Nucl. Phys. B (Proc. Suppl.) 28B, 213 (1992) The Pierre Auger Observatory Design Report (2nd edition), March 1997 see also http://www.auger.org/ and http://www-lpnhep.in2p3.fr/auger/welcome.html

    ADS  Google Scholar 

  17. S. Yoshida, H. Dai: J. Phys. G 24, 905 (1998) X. Bertou, M. Boratav, A. Letessier-Selvon: Int. J. Mod. Phys. A15, 2181 (2000), and references therein.

    Article  ADS  Google Scholar 

  18. M. Nagano, A. A. Watson: Rev. Mod. Phys. 72, 689 (2000)

    Article  ADS  Google Scholar 

  19. E. Fermi: Phys. Rev. 2nd ser., 75, no. 8, 1169 (1949) E. Fermi: Astrophys. J. 119, 1 (1954)

    Article  MATH  ADS  Google Scholar 

  20. V. L. Ginzburg: Usp. Fiz. Nauk 51, 343 (1953) See also Nuovo Cimento 3, 38 (1956)

    Google Scholar 

  21. V. L. Ginzburg: Dokl. Akad. Nauk SSSR 92, 1133 (1953) (NSF-Transl. 230)

    MATH  Google Scholar 

  22. V. L. Ginzburg, S. I. Syrovatskii: The origin of cosmic rays (Pergamon Press, Oxford 1964), Russian edition (1963)

    Google Scholar 

  23. T. K. Gaisser: Cosmic Rays and Particle Physics (Cambridge Univ. Press 1990)

    Google Scholar 

  24. V. L. Ginzburg: Phys. Usp. 36, 587 (1993)

    Article  ADS  Google Scholar 

  25. V. L. Ginzburg: Uspekhi Fizicheskikh Nauk 166, 169 (1996)

    Article  Google Scholar 

  26. V. S. Berezinskii, et al.: Astrophysics of Cosmic Rays (North-Holland, Amsterdam 1990), especially chapter IV.

    Google Scholar 

  27. T. Abu-Zayyad, et al.: Astrophys. J. 557, 686 (2001)

    Article  ADS  Google Scholar 

  28. B. Peters: Nuovo Cimento Suppl. XIV, 436 (1959) B. Peters: Nuovo Cimento XXII, 800 (1961)

    Article  Google Scholar 

  29. D. J. Bird, et al.: Astrophys. J. 511, 739 (1999)

    Article  ADS  Google Scholar 

  30. N. Hayashida, et al.: Astropart. Phys. 10, 303 (1999)

    Article  ADS  Google Scholar 

  31. J. A. Bellido, R. W. Clay, B. R. Dawson, M. Johnston-Hollitt: Astropart. Phys. 15, 167 (2001)

    Article  ADS  Google Scholar 

  32. N. Hayashida, et al.: Phys. Rev. Lett. 77, 1000 (1996) M. Takeda, et al.: Astrophys. J. 522, 225 (1999); and astro-ph/0008102

    Article  ADS  Google Scholar 

  33. R. D. Blandford, R. D. Eichler: Phys. Rep. 154, 1 (1987)

    Article  ADS  Google Scholar 

  34. L. O’C Drury: Rep. Prog. Phys. 46, 973 (1983)

    Article  ADS  Google Scholar 

  35. J. R. Jokipii: Astrophys. J. 313, 842 (1987)

    Article  ADS  Google Scholar 

  36. J. Bednarz, M. Ostrowski: Phys. Rev. Lett. 80, 3911 (1998)

    Article  ADS  Google Scholar 

  37. M. Garcia-Munoz, G. M. Mason, J. A. Simpson: Astrophys. J. 217, 859 (1977)

    Article  ADS  Google Scholar 

  38. M. Garcia-Munoz, J. A. Simpson, T. G. Guzik, J. P. Wefel, S. H. Margolis: Astrophys. J. Suppl. 64, 269 (1987)

    ADS  Google Scholar 

  39. C. H. Tsao, R. Silberberg, A. F. Barghouty: Astrophys. J. 549, 320 (2001)

    Article  ADS  Google Scholar 

  40. See, e.g.: R. L. Jaffe, W. Busza, J. Sandweiss, F. Wilczek: Rev. Mod. Phys. 72, 1125 (2000) A. Dar, A. De Rújula, U. Heinz: Phys. Lett. B470, 142 (1999) A. Kent, hep-ph/0009130

    Article  ADS  Google Scholar 

  41. H. Reeves: Ann. Rev. Astron. Astroph. 12, 437 (1974) H. Reeves: Rev. Mod. Phys. 66, 193 (1994)

    Article  ADS  Google Scholar 

  42. B. Wiebel-Sooth, P. L. Biermann: Landolt-Börnstein, vol. VI/3c, Springer Verlag 1999, pp. 37–90

    Google Scholar 

  43. R. Ramaty, B. Kozlovsky, R. E. Lingenfelter, H. Reeves: Astrophys. J. 488, 730 (1997)

    Article  ADS  Google Scholar 

  44. Proc. 25th International Cosmic Ray Conference, eds.: M. S. Potgieter, et al. (Durban, 1997)

    Google Scholar 

  45. J. F. Ormes, et al.: in Ref. [48], Vol. 5, 273 Y. Takahashi, et al.: in Ref. [7], p. 310 see also http://lheawww.gsfc.nasa.gov/docs/gamcosray/hecr/OWL/

  46. J. P. Rachen, P. L. Biermann: Astron. Astrophys. 272, 161 (1993) J. P. Rachen, T. Stanev, P. L. Biermann, Astron. Astrophys. 273, 377 (1993)

    ADS  Google Scholar 

  47. G. A. Medina Tanco: Astrophys. J. Lett. 510, L91 (1999)

    Article  ADS  Google Scholar 

  48. M. Blanton, P. Blasi, A. V. Olinto: Astropart. Phys. 15, 275 (2001)

    Article  ADS  Google Scholar 

  49. J. Kormendy, D. Richstone: Ann. Rev. Astron. Astrophys. 33, 581 (1995)

    ADS  Google Scholar 

  50. S. M. Faber, et al.: Astron. J. 114, 1771 (1997)

    Article  ADS  Google Scholar 

  51. J. Magorrian,, et al.: Astron. J. 115, 2285 (1998)

    Article  ADS  Google Scholar 

  52. K. Gebhardt, et al.: Astrophys. J. Lett. 539, L13 (2000)

    Article  ADS  Google Scholar 

  53. A. P. Lightman, S. L. Shapiro: Rev. Mod. Phys. 50, 437 (1978)

    Article  ADS  Google Scholar 

  54. F. Melia, H. Falcke: Ann. Rev. Astron. Astrophys. (in press) (2001)

    Google Scholar 

  55. C. B. Netterfield, et al.: astro-ph/0104460

    Google Scholar 

  56. A. T. Lee, et al.: astro-ph/0104459

    Google Scholar 

  57. N. W. Halverson, et al.: astro-ph/0104488, 0104489, 0104490

    Google Scholar 

  58. S. Perlmutter, et al.: Astrophys. J. 517, 565 (1999) A. G. Riess, et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  59. see also N. A. Bahcall, J. P. Ostriker, S. Perlmutter, P. J. Steinhardt: Science 284, 1481 (1999) R. Stompor, et al.: astro-ph/0105062

    Article  ADS  Google Scholar 

  60. J. P. Ostriker: Ann. Rev. Astron. Astrophys. 31, 689 (1993)

    Article  ADS  Google Scholar 

  61. M. Mateo: Ann. Rev. Astron. Astrophys. 36, 435 (1998)

    Article  ADS  Google Scholar 

  62. S. L. Snowden, et al.: Astrophys. J. 485, 125 (1997)

    Article  ADS  Google Scholar 

  63. H. Kaneda, K. Makishima, S. Yamauchi, K. Koyama, K. Matsuzaki, N. Y. Yamasaki: Astrophys. J. 491, 638 (1997)

    Article  ADS  Google Scholar 

  64. A. Valinia, F. E. Marshall: Astrophys. J. 505, 134 (1998)

    Article  ADS  Google Scholar 

  65. J. Pietz, J. Kerp, P. M. W. Kalberla, W. B. Burton, D. Hartmann, U. Mebold: Astron. Astrophys. 332, 55 (1998)

    ADS  Google Scholar 

  66. P. P. Kronberg: Rep. Prog. Phys., 57, 325 (1994)

    Article  ADS  Google Scholar 

  67. R. Beck, A. Brandenburg, D. Moss, A. Shukurov, D. Sokolo.: Ann. Rev. Astron. Astrophys. 34, 155 (1996)

    Article  ADS  Google Scholar 

  68. J. P. Vallée: Fund. Cosm. Phys. 19, 1 (1997)

    ADS  Google Scholar 

  69. A. M. Obukhov: Dokl. Akad. Nauk SSSR 32, 22 (1941) A. N. Kolmogorov: Dokl. Akad. Nauk SSSR 30, 299 (1941); ibid. 31, 538 (1941); ibid. 32, 19 (1941) W. Heisenberg: Z. Physik 124, 628 (1948) R. Z. Sagdeev: Rev. Mod. Phys. 51, 1 (1979) M. L. Goldstein, D. A. Roberts, W. H. Matthaeus: Ann. Rev. Astron. Astroph. 33, 283 (1995)

    Google Scholar 

  70. F. Krause, R. Beck: Astron. Astrophys. 335, 789 (1998)

    ADS  Google Scholar 

  71. R. M. Kulsrud: Ann. Rev. Astron. Astrophys. 37, 37 (1999)

    Article  ADS  Google Scholar 

  72. D. Grasso, H. R. Rubinstein: Phys. Rep. 348, 163 (2001)

    Article  ADS  Google Scholar 

  73. B. B. Nath, P. L. Biermann: Month. Not. R. Astron. Soc. 267, 447 (1994)

    ADS  Google Scholar 

  74. D. Ryu, H. Kang, P. L. Biermann: Astron. Astrophys. 335, 19 (1998)

    ADS  Google Scholar 

  75. T. Piran: Phys. Rep. 314, 575 (1999)

    Article  ADS  Google Scholar 

  76. D. B. Sanders, I. F. Mirabel: Ann. Rev. Astron. Astrophys. 34, 749 (1996)

    Article  ADS  Google Scholar 

  77. J. G. Learned, K. Mannheim: Ann. Rev. Nucl. Part. Sci. 50, 679 (2000)

    Article  ADS  Google Scholar 

  78. see, e.g., S. Weinberg: The Quantum Theory of Fields Vol 2: Modern Applications, Cambridge University Press (Cambridge, 1996)

    Google Scholar 

  79. see, e.g., W. Evans, F. Ferrer, S. Sarkar: astro-ph/0103085; to appear in Astropart. Phys.

    Google Scholar 

  80. T. W. B. Kibble: J. Phys. A9, 1387 (1976) for a review see A. Vilenkin: Phys. Rep. 121, 263 (1985)

    ADS  Google Scholar 

  81. see, e.g., E. W. Kolb, M. S. Turner: The Early Universe (Addison-Wesley, Redwood City, California, 1990)

    MATH  Google Scholar 

  82. for a brief review see V. Kuzmin, I. Tkachev: Phys. Rep. 320, 199 (1999)

    Article  ADS  Google Scholar 

  83. V. Berezinsky, M. Kachelriess: Phys. Rev. D 63034007 (2001)

    Article  ADS  Google Scholar 

  84. S. D. Wick, T. W. Kephart, T. J. Weiler, P. L. Biermann: astro-ph/0001233

    Google Scholar 

  85. A. Barrau: Astropart. Phys. 12, 269 (2000)

    Article  ADS  Google Scholar 

  86. T. J. Weiler: Phys. Rev. Lett. 49, 234 (1982) T. J. Weiler: Astrophys. J. 285, 495 (1984) T. J. Weiler: Astropart. Phys. 11, 303 (1999) D. Fargion, B. Mele, A. Salis: Astrophys. J. 517, 725 (1999) G. Gelmini, A. Kusenko: Phys. Rev. Lett. 82, 5202 (1999); ibid. 84, 1378 (2000)

    Article  ADS  Google Scholar 

  87. see, e.g.,-H. Kampert et al.: astro-ph/0102266

    Google Scholar 

  88. see, e.g., WiZard/CAPRICE Collaboration: astro-ph/0103513 Maeno et al., BESS Collaboration: Astropart. Phys. 16, 121 (2001) M. A. Huang: astro-ph/0104229

    Google Scholar 

  89. M. M. Shapiro: in LiBeB, Cosmic rays, and related X-and γ-rays, ASP conf. No. 171, Eds. R. Ramaty et al., p. 139–145 (1999)

    Google Scholar 

  90. J. H. M. M. Schmitt, B. M. Haisch, J. J. Drake: Science 265, 1420+ (1994)

    Article  ADS  Google Scholar 

  91. J. J. Drake, et al.: Science 267, 1470+ (1995)

    Article  ADS  Google Scholar 

  92. J.-P. Meyer, L. O’C Drury, D. C. Ellison: Astrophys. J. 487, 182 (1997)

    Article  ADS  Google Scholar 

  93. B. J. Rickett: Ann. Rev. Astron. Astroph. 28, 561 (1990)

    Article  ADS  Google Scholar 

  94. W. Baade, F. Zwicky: Proc. Nat. Acad. Science 20, no. 5, 259 (1934)

    Article  ADS  Google Scholar 

  95. A. Borione, et al.: Astrophys. J. 493, 175 (1998)

    Article  ADS  Google Scholar 

  96. E.-S. Seo, V. S. Ptuskin: Astrophys. J. 431, 705 (1994)

    Article  ADS  Google Scholar 

  97. P. L. Biermann: in Cosmic winds and the Heliosphere, Eds. J. R. Jokipii, et al., Univ. of Arizona press, p. 887–957 (1997), astro-ph/9501030

    Google Scholar 

  98. P. L. Biermann, N. Langer, E. Seo, T. Stanev: Astron. Astrophys. 369, 269 (2001)

    Article  ADS  Google Scholar 

  99. A. W. Strong, I. V. Moskalenko: astro-ph/0101068, invited talk at COSPAR2000 Symposium, E1.3: Origin and Acceleration of Cosmic Rays, ed. M.H. Israel, to appear in Adv. Sp. Res. Vol. 27 No. 4 I. V. Moskalenko, A. W. Strong: Astrophys. Sp. Sci. 272, 247 (2000), and references therein

    Google Scholar 

  100. M. A. K. Glasmacher, et al.: Astropart. Phys. 10, 291 (1999); ibid. 12, 1 (1999)

    Article  ADS  Google Scholar 

  101. H. Kang, D. Ryu, T. W. Jones: Astropart. Phys. 456, 422 (1996) H. Kang, J. P. Rachen, P. L. Biermann: Mon. Not. R. Astron. Soc. 286, 257 (1997)

    Google Scholar 

  102. A. M. Hillas: Ann. Rev. Astron. Astroph. 22, 425 (1984)

    Article  ADS  Google Scholar 

  103. P. L. Biermann, P. A. Strittmatter: Astrophys. J. 322, 643 (1987)

    Article  ADS  Google Scholar 

  104. for a detailed review see P. Bhattacharjee, G. Sigl: Phys. Rep. 327, 109 (2000)

    Article  ADS  Google Scholar 

  105. S. Coleman, S. L. Glashow: Phys. Rev. D 59, 116008 (1999) G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, S. Sarkar: Nature 393, 763 (1998) T. Kifune, Astrophys. J. Lett. 518, L21 (1999) R. Aloisio, P. Blasi, P. L. Ghia, A. F. Grillo, Phys. Rev. D 62, 053010 (2000)

    Article  ADS  Google Scholar 

  106. H. Meyer, R. Protheroe: Phys. Lett. B493, 1 (2000)

    ADS  Google Scholar 

  107. G. Amelino-Camelia, T. Piran: Phys. Lett. B497, 265 (2001)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biermann, P.L., Sigl, G. (2001). Introduction to Cosmic Rays. In: Lemoine, M., Sigl, G. (eds) Physics and Astrophysics of Ultra-High-Energy Cosmic Rays. Lecture Notes in Physics, vol 576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45615-5_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45615-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42899-2

  • Online ISBN: 978-3-540-45615-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics