Skip to main content

Relativistic Superfluid Models for Rotating Neutron Stars

  • Chapter
  • First Online:
Physics of Neutron Star Interiors

Part of the book series: Lecture Notes in Physics ((LNP,volume 578))

Abstract

This article starts by providing an introductory overview of the theoretical mechanics of rotating neutron stars as developed to account for the frequency variations, and particularly the discontinuous glitches, observed in pulsars. The theory suggests, and the observations seem to confirm, that an essential role is played by the interaction between the solid crust and inner layers whose superfluid nature allows them to rotate independently. However many significant details remain to be clarified, even in much studied cases such as the Crab and Vela. The second part of this article is more technical, concentrating on just one of the many physical aspects that needs further development, namely the provision of a satisfactorily relativistic (local but not microscopic) treatment of the effects of the neutron superfluidity that is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B.K. Harrison, K.S. Thorne, M. Wakano, J.A. Wheeler, Gravitation theory and gravitational collapse (University of Chicago Press, Chicago, 1965).

    Google Scholar 

  2. A.B. Migdal: Nucl. Phys. 13, 655–674 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  3. N. K. Glendenning, Compact stars (Springer, Heidelberg, 1997).

    Google Scholar 

  4. F. Weber, “Pulsars as astrophysical laboratories for nuclear and particle physica” (I.O.P. Publishing, Bristol, 1999).

    Google Scholar 

  5. D. Langlois:“Superfluidity in relativistic neutron stars”. [astro-ph/0008161]

    Google Scholar 

  6. L.D. Landau, E.M. Lifshitz, Course of Theorteical Physics, Vols. 1–9 (Pergamon, Oxford, 1959).

    Google Scholar 

  7. G. Baym, D. Pines: Annals of Physics 66, 816–835 (1971).

    Article  ADS  Google Scholar 

  8. G. Baym, C. Pethick, D. Pines, M. Ruderman: Nature 224, 872–874 (1969).

    Article  ADS  Google Scholar 

  9. M. Hoffberg, A.E. Glassgold, R.W. Richardson, M. Ruderman: Phys. Rev. Lett. 24, 775–777 (1970).

    Article  ADS  Google Scholar 

  10. J.A. Sauls, D.L. Stein, J.W. Serene: Phys. Rev. D25, 967–975 (1982).

    ADS  Google Scholar 

  11. N.K. Glendenning: Phys. Rev. D46, 1274–1287 (1992).

    ADS  Google Scholar 

  12. N.K. Glendenning, S. Pei: Phys. Rev. C52, 2250–2253 (1995).

    ADS  Google Scholar 

  13. M. Alford, K. Rajagopal, F. Wilczek: Nucl. Phys. B537, 443–458 (1999). [hepth/9804403]

    Google Scholar 

  14. D. Blaschke, D.M. Sedrakian, K.M. Shahabasyan: Astron. Astrophys. 350, L47 (1999). [astro-ph/9904395]

    ADS  Google Scholar 

  15. M. Alford, J. Berges, K. Ragjagopal: “Magnetic fields within colour superconducting neutron star cors”. [hep-ph/9910254]

    Google Scholar 

  16. D.M. Sedrakian, D. Blaschke, K.M. Shahabasyan, D.N. Voskresensky: “Meissner effect for color superconducting quark matter”. [hep-ph/0012383]

    Google Scholar 

  17. B. Carter: Annals of Physics, 95, 53–73 (1974).

    Article  ADS  Google Scholar 

  18. G.A. Vardanian, D.M. Sedrakian: Sov. Phys. J.E.T.P. 54(5), 919–921 (1981).

    Google Scholar 

  19. M.A. Alpar, S.A. Langer, J.A. Sauls: Astroph. J. 282, 533–541 (1984).

    Article  ADS  Google Scholar 

  20. S.E. Thorsett, D. Chakrabarty: Astroph. J. 512, 288–299 (1999).

    Article  ADS  Google Scholar 

  21. E. Chubarian, H. Grigorian, G. Poghosyan, D. Blaschke: Astron. Astrophys. 357, 968–976 (2000). [astro-ph/9903489]

    ADS  Google Scholar 

  22. M. Ruderman: Nature 223, 597–598 (1969).

    Article  ADS  Google Scholar 

  23. R. Smoluchowski: Phys. Rev. Lett. 24, 923–925 (1970).

    Article  ADS  Google Scholar 

  24. P.W. Anderson, N. Itoh: Nature 256, 25–26 (1975).

    Article  ADS  Google Scholar 

  25. A. Sedrakian, J.M. Cordes: Astroph. J. 502, 378–381 (1989). [astro-ph/9802102]

    Article  ADS  Google Scholar 

  26. M.A. Alpar, P.W. Anderson, D. Pines, J. Shaham: Astroph. J. Lett. 249, L29 (1981).

    Article  ADS  Google Scholar 

  27. A. Sedrakian, I. Wasserman, J.M. Cordes: “pinning”, Astroph. J. 524, 341–360 (1999).

    Article  ADS  Google Scholar 

  28. M.Q. Alpar, J.A. Sauls: Astroph. J. 327, 723–725 (1988).

    Article  ADS  Google Scholar 

  29. L. Bildsten, R.I. Epstein: Astroph. J., 342, 951–957 (1989)

    Article  ADS  Google Scholar 

  30. A.D. Sedrakian, D.M. Sedrakian: Sov. Phys. JETP 75, 395–399 (1992).

    ADS  Google Scholar 

  31. M.A. Alpar, P.W. Anderson, D. Pines and J. Shaham: Astroph. J. 276, 325–334 (1984);Astroph. J. 278, 791–805 (1984).

    Article  ADS  Google Scholar 

  32. P.B. Jones: Mon. Not. R. Astr. Soc. 246, 315–323 (1990).

    ADS  Google Scholar 

  33. A.D. Sedrakian and D.M. Sedrakian: Astroph. J. 447, 305–323 (1995).

    Article  ADS  Google Scholar 

  34. P.B. Jones: Astroph. J. 372, 208–212 (1991).

    Article  ADS  Google Scholar 

  35. B.K. Link, R.I. Epstein: Astroph. J. 373, 592–603 (1991).

    Article  ADS  Google Scholar 

  36. B.K. Link, R.I. Epstein: Astroph. J. 457, 844–854 (1996).

    Article  ADS  Google Scholar 

  37. A. Sedrakian, J.M. Cordes: Mon. Not. R. Astr. Soc. 307, 365 (1999). [astroph/9806042]

    Article  ADS  Google Scholar 

  38. M. Ruderman: Astroph. J. 203, 213–222 (1976).

    Article  ADS  Google Scholar 

  39. M. Ruderman: Astroph. J. 366, 261–269 (1991).

    Article  ADS  Google Scholar 

  40. B. Carter, D. Langlois, D.M. Sedrakian: Astron. Astroph 361, 795–802 (2000). [astro-ph/0004121].

    ADS  Google Scholar 

  41. R. Prix: Astron. Astrophys. 352, 623–631 (1999). [astro-ph/9910293].

    ADS  Google Scholar 

  42. S.L. Shapiro, S.A. Teukolsky, Black holes, white dwarfs, and neutron stars (Wiley, New York, 1883).

    Google Scholar 

  43. F. Pacini: Nature, 216, 567–568 (1967).

    Article  ADS  Google Scholar 

  44. P. Goldreich, W.H. Julian: Astroph. J. 157, 869 (1969).

    Article  ADS  Google Scholar 

  45. N. K. Glendenning, S. Pei, F. Weber: Phys. Rev. Lett. 79, 1603–1606 (1997).

    Article  ADS  Google Scholar 

  46. V.S. Beskin, A.V. Gurevich, Ya. N. Istomin, Physics of the pulsar magnetosphere (C.U.P., Cambridge, 1993).

    MATH  Google Scholar 

  47. A. Melatos: Mon. Not. R. Astr. Soc. 288, 1049–1059 (1997).

    ADS  Google Scholar 

  48. A.G. Lyne, R.S. Pritchard, F.G. Smith: Mon. Not. R. Astr. Soc. 233, 667–676 (1988).

    ADS  Google Scholar 

  49. A.G. Lyne, R.S. Pritchard, F.G. Smith, F. Camilio: Nature 381, 497–498 (1996).

    Article  ADS  Google Scholar 

  50. J. Shaham: Astroph. J. 214, 251–260 (1977).

    Article  ADS  Google Scholar 

  51. A. Melatos, “Radiative precession of an isolated neuton star”. [astro-ph/0004035]

    Google Scholar 

  52. B. Carter, H. Quintana: Annals of physica 95, 74–89 (1975).

    Article  ADS  Google Scholar 

  53. B. Carter, H. Quintana: Astroph. J. 202, 511–522 (1975).

    Article  ADS  Google Scholar 

  54. B. Carter, D. Langlois: Nuclear Physics B454, 402–424 (1995). [hep-th/9611082]

    ADS  MathSciNet  Google Scholar 

  55. B. Carter: in Topological defects and the non-equilibrium dynamics of symmetry breaking phase transitions (Les Houches 99), ed. Y.M. Bunkov and H. Godfrin, pp 267–301 (Kluwer, 2000). [gr-qc/9907039]

    Google Scholar 

  56. D. Langlois, D. M. Sedrakian, B. Carter: Mon. Not. Roy. Astr. Soc. 297, 1198–1201 (1998). [astro-ph/9711042]

    Article  ADS  Google Scholar 

  57. L. Lindblom, G. Mendel: Astroph. J. 421, 689–704 (1994).

    Article  ADS  Google Scholar 

  58. U. Lee: Astron. Astrop. 303, 515–525 [1995).

    ADS  Google Scholar 

  59. A. Sedrakian, I. Wasserman: Phys. Rev. D63, 024016 (2000). [astro-ph/0004331]

    ADS  Google Scholar 

  60. G.L. Comer, D. Langlois, L.M. Lin: Phys. Rev. D60, 104025 (1999). [grqc/9908040]

    ADS  Google Scholar 

  61. N. Andersson, G.L. Comer, “Slowly rotating general relativistic superfluid neutron stars”. [gr-qc/0009089]

    Google Scholar 

  62. N. Stergioulas, J. Friedman: Astroph. J. 492, 301–322 (1998). [gr-qc/9705056]

    Article  ADS  Google Scholar 

  63. S. Bonazzola, J. Frieben, E. Gourgoulhon: Astron. Astrophys. 331, 280–290 (1998). [gr-qc/9710121]

    ADS  Google Scholar 

  64. S. Morsink, N. Stergioulas, S.R. Blattnig: Astroph. J. 510, 854–861 (1999). [grqc/9806008]

    Article  ADS  Google Scholar 

  65. E. Gourgoulhon, P. Haensel, R. Levine, E. Paluch, S. Bonazzola, J.A. Marck: Astron. Astroph. 349, 851–862 (1999). [astro-ph/9907225]

    ADS  Google Scholar 

  66. N. Andersson, D.I. Jones, K.D. Kokkotas, N. Stergioulas: Astroph. J. 534, L75 (2000). [astro-ph/0002114]

    Article  ADS  Google Scholar 

  67. G.E. Volovik, “Exotic properties of superfluid helium 3” (World Scientific, Singapore, 1992).

    Google Scholar 

  68. J.A. Sauls “Superfluidity in the interior of neutron stars” in Timing Neutron Stars, Nato ASI C262, ed. H. Ogelman, E.J.P. van den Heuvel. pp 457–490 (Kluwer, Dordrecht, 1988).

    Google Scholar 

  69. G. Mendel, L. Lindblom: Annals of Physics 205, 110–129 (1991).

    Article  ADS  Google Scholar 

  70. B. Carter, D. Langlois: Nuclear Phys. B531, 478–504 (1998). [gr-qc/9806024]

    ADS  MathSciNet  Google Scholar 

  71. B. Carter: Gravitation and Cosmology 6, Supplement, 204–213 (2000). [astroph/0010109]

    Google Scholar 

  72. I.L. Bekarevich, I.M. Khalatnikov: Sov. Phys. J.E.T.P. 13, 643–646 (1961).

    Google Scholar 

  73. B. Carter: in Relativistic Fluid Dynamics (C.I.M.E., Noto, May 1987) ed. A.M. Anile, & Y. Choquet-Bruhat, Lecture Notes in Mathematics 1385 pp 1–64 (Springer-Verlag, Heidelberg, 1989).

    Google Scholar 

  74. V.V. Lebedev, I.M. Khalatnikov: Sov. Phys. J.E.T.P. 56, 923–930 (1982).

    Google Scholar 

  75. B. Carter, I.M. Khalatnikov: Phys. Rev. D45, 4536–4544 (1992).

    ADS  MathSciNet  Google Scholar 

  76. B. Carter, D. Langlois: Phys. Rev. D51, 5855–5864 (1995). [hep-th/9507 058]

    ADS  Google Scholar 

  77. B. Carter: in Active Galactic Nuclei, ed. C. Hazard & S. Mitton, pp 273–300 (Cambridge U.P., 1979).

    Google Scholar 

  78. B. Carter: in Black Holes (proc. 1972 Les Houches Summer School), ed. B. & C. DeWitt, pp 57–210 (Gordon and Breach, New York, 1973).

    Google Scholar 

  79. W. Unruh; Phys. Rev. Letters 46, 1351–1357 (1981).

    Article  ADS  Google Scholar 

  80. W. Unruh: Phys. Rev. D51, 2827–2838 (1995). [gr-qc/9409008]

    ADS  MathSciNet  Google Scholar 

  81. C. Barcelo, S. Liberati, M. Visser:, “Covariant Theory of Conductivity in Ideal Fluid or Solid Media”, [gr-qc/0011026]

    Google Scholar 

  82. A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics (Benjamin, New York, 1967).

    MATH  Google Scholar 

  83. A.H. Taub: Phys. Rev. 94, 1469–1470 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  84. B. Schutz: Phys. Rev. D2, 2762–2773 (1970).

    ADS  MathSciNet  Google Scholar 

  85. B. Carter: Class. Quantum Grav. 11, 2013–2030 (1994).

    Article  ADS  Google Scholar 

  86. B. Carter, in A Random Walk in Relartivity and Cosmology, Proc. Vadya-Raychaudhuri Festschrift, IAGRG 1983, ed. N. Dadhich, J. Krishna Rao, J.V. Narlikar, C.V. Vishveshwara, pp 48–62 (Wiley Eastern, Bombay, 1985).

    Google Scholar 

  87. B. Carter, I.M. Khalatnikov: Ann. Phys. 219, 243–265 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  88. W. Israel: Physics Letters A86, 79–81 (1981); Physics Letters A92, 77–78 (1982)

    ADS  MathSciNet  Google Scholar 

  89. W.G. Dixon: Arch. Rat. Mech. Anal. 80, 159 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  90. T.S. Olsen: Physics Letters A149, 71–75 (1990).

    ADS  Google Scholar 

  91. L.D. Landau, E.M. Lifshitz, Statistical Physics (trad. E. and R.F. Peierls), Section VI (Pergamon, Oxford, 1959).

    Google Scholar 

  92. R.I. Epstein: Astroph. J. 333, 880–894 (1988).

    Article  ADS  Google Scholar 

  93. S. Tsuruta: Phys. Rep. 56, 237–278 (1979).

    Article  ADS  Google Scholar 

  94. A.F. Andreev, E.P. Bashkin: Sov. Phys. J.E.T.P. 42, 164–167 (1976).

    ADS  Google Scholar 

  95. O. Sjoberg: Nucl. Phys. A265, 511–516 (1976).

    ADS  Google Scholar 

  96. P. B. Jones; Mon. Not. R. Astr. Soc., 257, 501–506 (1992).

    ADS  Google Scholar 

  97. B. Link, R.I. Epstein, G. Baym: Astroph. J., 403, 285–302, (1993).

    Article  ADS  Google Scholar 

  98. P. Haensel: Astron. Astroph., 262, 131–137 (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carter, B. (2001). Relativistic Superfluid Models for Rotating Neutron Stars. In: Blaschke, D., Sedrakian, A., Glendenning, N.K. (eds) Physics of Neutron Star Interiors. Lecture Notes in Physics, vol 578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44578-1_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44578-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42340-9

  • Online ISBN: 978-3-540-44578-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics