Skip to main content

Spin glass behavior in finite numerical samples

  • Theoretical Papers
  • Conference paper
  • First Online:
Heidelberg Colloquium on Spin Glasses

Part of the book series: Lecture Notes in Physics ((LNP,volume 192))

Abstract

The main points of a numerical simulation study of the spin glass transition in Ruderman-Kittel-Kasuya-Yosida (RKKY) systems are summarized. New results are also presented as follows. An investigation of the lifetime of spin freezing in a sample of 960 spins yields results which resemble qualitatively, if not quantitatively, the behavior of macroscopic systems. In the absence of anisotropy, a gradual spin freezing is found to set in at low temperatures when rotational decay of the Edwards-Anderson (EA) order parameter q is eliminated. However, this freezing exhibits no transition feature and is thought to be a finite sample effect. A study of 50 randomly selected ground states for a system of 500 spins is also presented. Evidence is given for a model of closely similar ground state pairs in which a small defect region occurs inverted in the two states concerned. Upper limit exchange barriers separating ground states are found to be substantially less than the mean thermal energy residing on the spins in the barrier region at reduced temperature T* = T *G in a number of cases. Thus, the possibility of barrier transitions, which underlie the observed decay of q, magnetic remanence, torque and EPR parameters, etc., in the spin glass state, is shown to be a natural feature of a disordered, exchange coupled spin system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. V. Cannella and J. A. Mydosh: Phys. Rev. B6, 4220 (1972).

    Google Scholar 

  2. K. Binder and D. Stauffer, to appear in Monte Carlo Methods in Statistical Physics II, Springer, Berlin-Heidelberg-New York; K. Binder and D. Stauffer: in Monte Carlo Methods in Statistical Physics (K. Binder, ed.) p. 301, Springer, Berlin-Heidelberg-New York 1979; K. Binder: in Fundamental Problems in Statistical Mechanics V, p. 21, ed. by E. G. D. Cohen, North-Holland, Amsterdam 1980; K. H. Fischer: Phys. Status Solidi (b).

    Google Scholar 

  3. D. Sherrington and S. Kirkpatrick: Phys. Rev. Lett. 32, 1972 (1975); Phys. Rev. B17, 4384 (1978).

    Google Scholar 

  4. D. J. Thouless, P. W. Anderson and R. G. Palmer: Phil. Mag. 35, 593 (1977).

    Google Scholar 

  5. G. Parisi: Phys. Lett. A 73, 203 (1979); Phys. Rev. Lett. 43, 1754 (1979); J. Phys. A 13, 1101 (1980).

    Google Scholar 

  6. G. Parisi, G. Toulouse: J. Phys. Lett. 41, L361 (1980).

    Google Scholar 

  7. D. J. Elderfield and D. Sherrington: J. Phys, A 15, L437 (1982); J. Phys. A 15, L513 (1982); J. Phys. C 15, L783 (1982); J. Phys. C, to be published (1983).

    Google Scholar 

  8. J. L. van Hemmen: Phys. Rev. Lett. 49, 409 (1982).

    Google Scholar 

  9. R. E. Walstedt: Physica 109 & 110B, 1924 (1982).

    Google Scholar 

  10. R. E. Walstedt and L. R. Walker: Phys. Rev. Lett. 47, 1624 (1981).

    Google Scholar 

  11. H. E. Stanley and T. A. Kaplan: Phys. Rev. Lett. 17, 913 (1966).

    Google Scholar 

  12. N. D. Mermin and A. Wagner: Phys. Rev. Lett. 17, 1133 (1966).

    Google Scholar 

  13. R. E. Walstedt and L. R. Walker: J. Appl. Phys. 53, 7985 (1982).

    Google Scholar 

  14. L. R. Walker and R. E. Walstedt: J. Mag. Mag. Mat. 31–34, 1289 (1983).

    Google Scholar 

  15. The anisotropy of 0.3 at % Mn in Cu is increased by a factor ≈5 by adding 0.1 at % Au (J. J. Préjean, M. J. Joliclerc and P. Monod: J. Phys. 41, 1127 (1980). The resulting change in TG is an increase by ≈5% (F. Milliken and S. J. Williamson: private communication).

    Google Scholar 

  16. The asterisk is used to denote quantities expressed in the reduced units of our model.

    Google Scholar 

  17. T *G is estimated by scaling the experimental transition temperature by a factor 2d2 V0S(S+1)/kB a3 (W. Y. Ching and D. L. Huber: J. Phys. F8, L63 (1978) where the RKKY 3 exchange term is written — JijSi ·, with Jij = V0cos(2kFrij)/rij 3.

    Google Scholar 

  18. L. R. Walker and R. E. Walstedt: Phys. Rev. B 22, 3816 (1980).

    Google Scholar 

  19. D. L. Martin: Phys. Rev. B20, 368 (1979).

    Google Scholar 

  20. This argument assumes the equivalence of classical and quantum thermal energies and ignores changes in the zero-point energy, which is large. The former assumption is reasonable for large spin quantum numbers. On the latter point, changes in the zero-point energy may be small if relatively few modes are excited for T* < T *G . That this is the case may be seen in Fig. 3.

    Google Scholar 

  21. S. F. Edwards and P. W. Anderson: J. Phys. F5, 965 (1975).

    Google Scholar 

  22. J. Souletie: Heidelberg Colloquium on Spin Glasses 1983.

    Google Scholar 

  23. D. A. Smith: J. Phys. F 4, L26 (1974); 5, 2168 (1975); F. A. Rozario and D. A. Smith: J. Phys. F 7, 439 (1977).

    Google Scholar 

  24. G. Toulouse and M. Gabay: J. Phys. Lett. (Paris) 42, L163 (1981); G. Toulouse, M. Gabay, T. C. Lubensky and J. Vannimenus: J. Phys. Lett. (Paris) 43, L109 (1982).

    Google Scholar 

  25. R. V. Chamberlin, M. Hardiman, L. A. Turkevich, and R. Orbach: Phys. Rev. B 25, 6720 (1982).

    Google Scholar 

  26. H. Sompolinsky and A. Zippelius: Phys. Rev. B 25, 6860 (1982).

    Google Scholar 

  27. The RKKY and dipolar interaction are defined here as \( - A\vec n_i \cdot \vec n_j \) cos(2kFrij)/r3 3ij and \( - D\left[ {\vec n_i \cdot \vec n_j /r_{ij}^3 - 3(\vec n_i \cdot \vec r_{ij} )(\vec n_j \cdot \vec r_{ij} )/n_{ij}^5 } \right]\) respectively. Dipolar interaction terms are limited to nearest neighbor pairs only. The results in this paper were obtained using D/A = 0.01.

    Google Scholar 

  28. J. Souletie and R. Tournier: J. Low Temp. Phys. 1, 95 (1969).

    Google Scholar 

  29. R. H. Heffner, M. Leon, M. E. Schillaci, D. E. MacLaughlin and S. A. Dodds: J. Appl. Phys. 53, 2174 (1982); R. H. Heffner, M. Leon and D. E. MacLaughlin: Proceedings of the Yamada Conference on Muon Spin Rotation and Associated Problems, Shimoda, Japan 1983.

    Google Scholar 

  30. K. Binder, Z. Phys. B. 26, 339 (1977).

    Google Scholar 

  31. In previous work (Ref. 18) the rotational modes were omitted from the spectra shown because of their limited importance for the macroscopic case.

    Google Scholar 

  32. B. I. Halperin and W. M. Saslow: Phys. Rev. B 16, 2154 (1977).

    Google Scholar 

  33. S. A. Roberts: J. Phys. C 15, 4755 (1981).

    Google Scholar 

  34. A. J. Bray and M. A. Moore: J. Phys. C 14, 2629 (1981).

    Google Scholar 

  35. I. Morgenstern and K. Binder: Phys. Rev. Lett. 43, 1615 (1980); Phys. Rev. B 22, 288 (1980).

    Google Scholar 

  36. A. P. Young: Phys. Rev. Lett. 50, 917 (1983).

    Google Scholar 

  37. F. Mezei: J. App. Phys. 53, 7654 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. L. van Hemmen I. Morgenstern

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Walstedt, R.E. (1983). Spin glass behavior in finite numerical samples. In: van Hemmen, J.L., Morgenstern, I. (eds) Heidelberg Colloquium on Spin Glasses. Lecture Notes in Physics, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12872-7_49

Download citation

  • DOI: https://doi.org/10.1007/3-540-12872-7_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12872-4

  • Online ISBN: 978-3-540-38761-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics