Skip to main content

The Organelles II: Endoplasmic Reticulum and its Overload

  • Chapter
Brain Damage and Repair

Summary

The endoplasmic reticulum (ER) is a subcellular compartment playing a central role in calcium storrage and calcium signalling. Furthermore, all newly synthesized membrane and secretory proteins are folded and processed in this subcellular compartment. These are strictly calcium-dependent processes that need for correct functioning a calcium activity in the range close to that of the extracellular space. Under conditions associated with ER dysfunction, unfolded proteins accumulate in the lumen of the ER. This is the warning signal for activation of highly conserved stress responses, including the unfolded protein response (UPR), necessary to restore normal functioning of the ER, and the ER-associated degradation (ERAD) to degrade unfolded proteins at the proteasome. In acute pathological states of the brain, such as stroke, neurotrauma, epileptic seizures, and in degenerative diseases ER functioning is impaired in multiple ways. These include disturbances of ER calcium homeostasis, impairment of ERAD and UPR, and insufficient proteasome functioning which triggers secondary ER dysfunction. Therapeutic interventions designed to suppress the pathological process culminating in neuronal cell death in acute and degenerative diseases of the brain could therefore focus on strategies aimed at improving the capability of neurons to withstand conditions associated with ER dysfunction

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Siesjö BK (1978) Brain Energy Metabolism. New York, John Wiley

    Google Scholar 

  2. Siesjö BK (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metabol 1:155–185

    Article  Google Scholar 

  3. Sattler R, Charlton MP, Hafner M, Tymianski M (1998) Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J Neurochem 71:2349–2364

    Article  PubMed  CAS  Google Scholar 

  4. Paschen W (1996) Disturbances in calcium homeostasis within the endoplasmic reticulum may contribute to the development of ischemic cell damage. Med Hypoth 47:283–288

    Article  CAS  Google Scholar 

  5. Paschen W, Doutheil J (1999) Disturbances of the functioning of endoplasmic reticulum: a key mechanism signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional underlying neuronal cell injury? J Cereb Blood Flow Metabol 19:1–18

    Article  CAS  Google Scholar 

  6. Paschen W, Frandsen A (2001) Endoplasmic reticulum dysfunction — a common denominator for cell injury in acute and degenerative diseases of the brain? J Neurochem 79:719–725

    Article  PubMed  CAS  Google Scholar 

  7. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  PubMed  CAS  Google Scholar 

  8. Kaufman RJ (1999) Stress and translational controls. Genes Dev 13:1211–1233

    Article  PubMed  CAS  Google Scholar 

  9. Hofer AM, Machen TE (1993) Technique for in situ measurement of calcium in intracellular inositol 1, 4, 5-triphosphate-sesitive stores using the fluorescent indicator mag-fura-2. Proc Natl Acad Sci USA 90:2598–2602

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Galione A, Churchill GC (2002) Interactions between calcium release pathways: multiple messengers and multiple stores. Cell Calcium 35:343–354

    Article  Google Scholar 

  11. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Hampton RY (2002) ER-asociated degradation in protein quality control and cellular regulation. Curr Opinion Cell Biol 14:476–482

    Article  PubMed  CAS  Google Scholar 

  13. Doutheil J, Althausen S, Treiman M, Paschen W (2000) Effect of nitric oxide on endoplasmic reticulum calcium homeostasis, protein synthesis and energy metabolism. Cell Calcium 27:107–115

    Article  PubMed  CAS  Google Scholar 

  14. Kohno K, Higuchi T, Ohta S, Kohno K, Kumon Y, Sakaki S (1997) Neuroprotective nitric oxide synthase inhibitor reduces intracellular calcium accumulation following transient global ischemia in the gerbil. Neurosci Lett 224:17–20

    Article  PubMed  CAS  Google Scholar 

  15. Parsons JT, Churn SB, Delorenzo RJ (1997) Ischemia-induced inhibition of calcium uptake into rat brain microsomes mediated by Mg2+/Ca2+-ATPase. J Neurochem 68:1124–1134

    Article  PubMed  CAS  Google Scholar 

  16. Parsons JT, Churn SB, Kochan LD, DeLorenzo RJ (2000) Pilocarbin-induced status epilepticus causes N-methyl-D-aspartate receptor-dependent inhibition of microsomal Mg2+/Ca2+-ATPase- mediated increases in Ca2+ uptake. J Neurochem 75:1209–1218

    Article  PubMed  CAS  Google Scholar 

  17. Kumar R, Azam S, Sullivan JM, Owen C, Cavener DRC, Zhang P, Ron D, Harding HP, Chen J-J, Han A, White BC, Krause GS, DeGracia DJ (2001) Brain ischemia and reperfusion activates the eukaryotic initiation factor 2a kinase, PERK. J Neurochem 77:1418–1421

    Article  PubMed  CAS  Google Scholar 

  18. Calfon M, Zeng H, Urano F, Till JH, Hubbart SR, Harding HP, Clark SG, Ron D (2002) IREI couples endoplasmic reticulum load to secretory capacity by processing XBP-1 mRNA. Nature 415:92–96

    Article  PubMed  CAS  Google Scholar 

  19. Paschen W, Aufenberg C, Hotop S, Mengesdorf T (2003) Transient cerebral ischemia activates processing of xbpl mRNA indicative of endoplasmic reticulum stress. J Cereb Blood Flow Metabol, in press

    Google Scholar 

  20. Althausen S, Mengesdorf T, Mies G, Oláh L, Nairn AC, Proud CG, Paschen W (2001) Changes in phosphorylation of initiation factor eIF2a, elongation factor eEF-2 and p70 S6 kinase after transient focal cerebral ischemia in mice. J Neurochem 78:779–787

    Article  PubMed  CAS  Google Scholar 

  21. Chung KKK, Dawson VL, Dawson TM (2001) The role of the ubiquitin-proteasomal pathway in Parkinson’s disease and other neurodegenerative disorders. Trends Neurosci 24 (11, Suppl. 1):S7–S14

    Article  Google Scholar 

  22. Mattson MP (2002) Oxidative stress, perturbed calcium homeostasis and immune dysfunction in Alzheimer’s disease. J Neurovirol 8:539–550

    Article  PubMed  CAS  Google Scholar 

  23. Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, Morihara T, Yoneda T, Gomi F, Mori Y, Nakano J, Takeda J, Tsuda T, Itoyama Y, Murayama O, Takashima A, St George-Hyslop P, Takeda M, Tohyama M (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded protein response. Nature Cell Biol 1:479–485

    Article  PubMed  CAS  Google Scholar 

  24. Roy J, Minotti S, Dong LC, Figlewicz DA, Durham HD (1998) Glutamate potentiates the tocixity of mutant Cu/Zn-superoxide dismutase in motor neurons by postsynaptic calcium-dependent mechanisms. J Neurosci 18:9673–9684

    PubMed  CAS  Google Scholar 

  25. Kourroku Y, Fujita E, Jimbo A, Kikuchi T, Yamagata T, Momoi, MY, Kominami E, Kuida K, Sakamaki K, Yonehara S, Momoi T (2002) Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum Mol Gen 11:1505–1515

    Article  Google Scholar 

  26. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasomal system by protein aggregation. Science 292:1552–1555

    Article  PubMed  CAS  Google Scholar 

  27. Mengesdorf T, Jensen PH, Mies G, Aufenberg C, Paschen W (2002) Down-regulation of parkin protein in transient focal cerebral ischemia: A link between stroke and degenerative disease? Proc Natl Acad Sei USA 99:15042–15047

    Article  CAS  Google Scholar 

  28. Imai Y, Soda M, Takahashi R (2000) Parkin suppress unfolded protein stress-induced cell death through its E3 ubiquitin-ligase activity. J Biol Chem 275:35661–35664

    Article  PubMed  CAS  Google Scholar 

  29. Ledesma MD, Galvan C, Hellias B, Dotti C, Jensen PH (2002) Astrocytic but not neuronal increased expression and redistribution of parkin during unfolded protein stress. J Neurochem 83:1431–1440

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paschen, W. (2004). The Organelles II: Endoplasmic Reticulum and its Overload. In: Herdegen, T., Delgado-García, J. (eds) Brain Damage and Repair. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2541-6_8

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2541-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6538-4

  • Online ISBN: 978-1-4020-2541-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics