Skip to main content

Chloroplast to Leaf

  • Chapter
Photosynthetic Adaptation

Part of the book series: Ecological Studies ((ECOLSTUD,volume 178))

Abstract

Leaf shapes and morphologies are very diverse. Obviously there are many successful solutions to the challenge of constructing an organ that intercepts light, enables CO2 uptake, restricts water loss, and withstands or avoids temperature extremes, herbivory, and disease. Tradeoffs exist among capturing CO2 and light, water loss, or construction cost. So, to some extent, the various leaf structures represent different compromises that are reached in different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aalto, T., and Juurola, E. 2002. A three-dimensional model of CO2 transport in airspaces and mesophyll cells of a silver birch leaf. Plant Cell Environ. 25:1399–1409.

    Article  Google Scholar 

  • Assmann, S. M. 1999. The cellular basis of guard cell sensing of rising CO2. Plant Cell Environ. 22:629–637.

    Article  CAS  Google Scholar 

  • Atkin, O. K., Evans, J. R., and Siebke, K. 1998. Relationship between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment. Aust. J. Plant Physiol. 25:437–443.

    Article  Google Scholar 

  • Atkin, O. K., Holly, C., and Ball, M. C. 2000. Acclimation of snow gum (Eucalyptus pauciflora) leaf respiration to seasonal and diurnal variations in temperature: The importance of changes in the capacity and temperature sensitivity of respiration. Plant Cell Environ. 23:15–26.

    Article  Google Scholar 

  • Ball, M. C., Wolfe, J., Canny, M., Hofmann, M., Nicotra, A. B., and Hughes, D. 2002. Space and time dependence of temperature and freezing in evergreen leaves. Funct. Plant Biol. 29:1259–1272.

    Article  Google Scholar 

  • Bernacchi, C. J., Portis, A. R., Nakano, H., von Caemmerer, S., and Long, S. P. 2002. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol. 130:1992–1998.

    Article  CAS  PubMed  Google Scholar 

  • Beyschlag, W., and Eckstein, J. 1998. Stomatal patchiness. In: Progress in Botany. K. Behnke et al. (eds.), pp. 283–298, Berlin: Springer-Verlag.

    Google Scholar 

  • Blatt, M. R. 1999. Reassessing roles for Ca2+ in guard cell signaling. J. Exp. Bot. 50:989–999.

    Article  CAS  Google Scholar 

  • Boyer, J. S., Wong, S. C., and Farquhar, G. D. 1997. CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiol. 114:185–191.

    CAS  PubMed  Google Scholar 

  • Brugnoli, E., Scartazza, A., Lauteri, M., Monteverdi, M. C., and Máguas, C. 1997. Carbon isotope discrimination in structural and non-structural carbohydrates in relation to productivity and adaptation to unfavourable conditions. In: Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. H. Griffiths (ed.), pp. 203–222. Oxford: Bios Scientific Publishers Limited.

    Google Scholar 

  • Bongi, G., and Loreto, F. 1989. Gas-exchange properties of salt-stressed olive (Olea europea L.) leaves. Plant Physiol. 90:1408–1416.

    Article  CAS  PubMed  Google Scholar 

  • Buckley, T. N., Farquhar, G. D., and Mott, K. A. 1997. Qualitative effects of patchy stomatal conductance distribution features on gas-exchange calculations. Plant Cell Environ. 20:867–880.

    Article  Google Scholar 

  • Cheeseman, J. M. 1991. PATCHY—Simulating and visualizing the effects of stomatal patchiness on photosynthetic CO2 exchange studies. Plant Cell Environ. 14:593–599.

    Article  Google Scholar 

  • Cooper, G. J., and Boron, W. F. 1998. Effects of PCMBS on CO2 permeability of Xenopus oocytes expressing aquaporin 1 or its 189S mutant. Am. J. Physiol. 275C:1481–1486.

    Google Scholar 

  • Cordell, S., Goldstein, G., Meinzer, F. C., and Handley, L. L. 1999. Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and delta 13C along an altitudinal gradient. Funct. Ecol. 13:811–818.

    Article  Google Scholar 

  • Cushman, J. C., Taybi, T., and Bohnert, H. J. 2000. Induction of Crassulacean acid metabolism—Molecular aspects. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 551–582. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Daley, P. F., Raschke, L., Ball, J. T., and Berry. J. A. 1989. Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. Plant Physiol. 90:1233–1238.

    Article  CAS  PubMed  Google Scholar 

  • Davies, X. J., and Zhang, J. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:55–76.

    Article  CAS  Google Scholar 

  • Delfine, S., Alvino, A., Zacchini, M., and Loreto, F. 1998. Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Aust. J. Plant Physiol. 25:395–402.

    Article  CAS  Google Scholar 

  • Delfine, S., Alvino, A., Villani, M. C., and Loreto, F. 1999. Restrictions to CO2 conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol. 119:1101–1106.

    Article  CAS  PubMed  Google Scholar 

  • Downton, W. J. S., Loveys, B. R., and Grant, W. J. R. 1988. Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. New Phytol. 108:263–266.

    Article  CAS  Google Scholar 

  • Edwards G. E., and Baker, N. R. 1993. Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosyn. Res. 37:89–102.

    Article  CAS  Google Scholar 

  • Epron D., Godard D., Cornic G., and Genty B. 1995. Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant Cell Environ. 18:43–51.

    Article  Google Scholar 

  • Evans, J. R. 1999. Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytol. 143:93–104.

    Article  Google Scholar 

  • Evans, J. R., and Loreto, F. 2000. Acquisition and diffusion of CO2 in higher plant leaves. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 321–351. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Evans, J. R., and Vellen, L. 1996. Wheat cultivars differ in transpiration efficiency and CO2 diffusion inside their leaves. In: Crop Research in Asia: Achievements and Perspective. R. Ishii and T. Horie (eds.), pp. 326–329. Tokyo: Asian Crop Science Association.

    Google Scholar 

  • Evans, J. R., von Caemmerer, S., Setchell, B. A., and Hudson, G. S. 1994. The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust. J. Plant Physiol. 21:475–495.

    Article  CAS  Google Scholar 

  • Ewert, M. S., Outlaw, W. H. Jr., Zhang, S., Aghoram, K., and Riddle, K. A. 2000. Accumulation of an apoplastic solute in the guard-cell wall is sufficient to exert a significant effect on transpiration in Vicia faba leaflets. Plant Cell Environ. 23:195–203.

    Article  Google Scholar 

  • Farquhar, G. D., and Sharkey, T. D. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33:317–345.

    Article  CAS  Google Scholar 

  • Franks, P. J., Cowan, I. R., and Farquhar, G. D. 1995. A study of stomatal mechanics using the cell pressure probe. Plant Cell Environ. 18:795–800.

    Article  Google Scholar 

  • Gaudillere, J. P. 1981. CO2 evolution outside leaves during photosynthesis. In: Photosynthesis 4. Regulation of Carbon Metabolism. G. Akoyunoglou (ed.), pp. 661–666. Philadelphia: Balaban International Science.

    Google Scholar 

  • Genty, B., and S. Meyer. 1995. Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging. Aust. J. Plant Physiol. 22:277–284.

    Article  Google Scholar 

  • Genty, B., Meyer, S., Piel, C., Badeck, F., and Liozon, R. 1998. CO2 diffusion inside leaf mesophyll of ligneous plants. In: Photosynthesis: Mechanisms and Effects. G. Garab (ed.), pp. 3961–3966. Dorecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Gorton, H. L., Herbert, S. K., and T.C. Vogelmann. 2003. Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO2 diffusion in leaves of Alocasia brisbanensis. Plant Physiol. 132:1529–1539.

    Article  CAS  PubMed  Google Scholar 

  • Gotow, K., Taylor, S., and Zeiger, E. 1988. Photosynthetic carbon fixation in guard cell protoplasts of Vicia faba L.: Evidence from radiolabel experiments. Plant Physiol. 86:700–705.

    Article  CAS  PubMed  Google Scholar 

  • Haberlandt, G. 1914. Physiological Plant Anatomy, 4th German ed. Leipzig: W. Engelmann.

    Google Scholar 

  • Hanba, Y. T., Miyazawa, S.-I., and Terashima, I. 1999. The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm temperate forests. Funct. Ecol. 13:632–639.

    Article  Google Scholar 

  • Hanba, Y. T., Miyazawa, S., Kogami, H., and Terashima, I. 2001. Effects of leaf age on internal CO2 transfer conductance and photosynthesis in tree species having different types of shoot phenology. Aust. J. Plant Physiol. 28:1–9.

    Google Scholar 

  • Hanba, Y. T., Kogami, H., and Terashima, I. 2002. The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light adaptation. Plant Cell Environ. 25:1021–1030.

    Article  Google Scholar 

  • Haupt-Herting, S., Klug, K., Fock, H. P. 2001. A new approach to measure gross CO2 fluxes in leaves. Gross CO2 assimilation, photorespiration, and mitochondrial respiration in the light in tomato under drought stress. Plant Physiol. 126:388–396.

    Article  CAS  PubMed  Google Scholar 

  • Heath, O. V. S. 1950. The role of carbon dioxide in the light response of stomata. J. Exp. Bot. 1:29–62.

    Article  Google Scholar 

  • Hsiao, T. C., and Allaway, W. G. 1973. Action spectra for guard cell Rb+ uptake and stomatal opening in Vicia faba. Plant Physiol. 51:82–88.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson, P. E. 1986. Blue light regulation of stomata in wheat seedlings. II. Action spectrum and search for action dichroism. Physiol. Plant 66:207–210.

    Article  Google Scholar 

  • Kinoshita T., and Shimazaki, K.-I. 1999. Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J. 20:5548–5558.

    Article  Google Scholar 

  • Kinoshita, T., Nishimura, M., and Shimazaki, K.-I. 1995. Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of faba bean. Plant Cell 7:1333–1342.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita, T., Doi, M., Suetsugu, N., Kagawa, T., Wada, M., and Shimazaki, K.-I. 2001. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–660.

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum, M. U. F., and Pearcy R. W., 1988. Gas exchange analysis of the relative importance of stomatal and biochemical factors in photosynthetic induction in Alocasia macrorrhiza. Plant Physiol. 86:782–785.

    Article  CAS  PubMed  Google Scholar 

  • Kjellbom, P., Karlsson, C., Johansson, I., Karlsson, M., and Johanson, U. 1999. Aquaporins and water homeostasis in plants. Trends Plant Sci. 4:308–314.

    Article  PubMed  Google Scholar 

  • Kogami H., Hanba Y. T., Kibe T., Terashima I., and Masuzawa T. 2001. CO2 transfer conductance, leaf structure and carbon isotope discrimination of Polygonum cuspidatum leaves from low and high altitude. Plant Cell Environ. 24:529–538.

    Article  CAS  Google Scholar 

  • Kok, B. 1948. A critical consideration of the quantum yield of Chlorella-photosynthesis. Enzymologia 13:1–56.

    CAS  Google Scholar 

  • Laisk, A. K. 1977. Kinetics of photosynthesis and photorespiration in C3-plants. Nauka, Moscow (in Russian).

    Google Scholar 

  • Lange, O. L., Losch, R., Schulze, E.-D., and Kappen, L. 1971. Responses of stomata to changes in humidity. Planta 100:76–86.

    Article  Google Scholar 

  • Lauteri, M., Scartazza, A., Guido, M. C., and Brugnoli, E. 1997. Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct. Ecol. 11:675–683.

    Article  Google Scholar 

  • Lawson, T., Oxborough, K., Morison, J. I. L., and Baker, N. R. 2002. Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity. Plant Physiol. 128:52–62.

    Article  CAS  PubMed  Google Scholar 

  • Lawson, T., Oxborough, K., Morison, J. I. L., and Baker, N. R. 2003. The responses of guard and mesophyll cell photosynthesis to CO2, O-2, light, and water stress in a range of species are similar. J. Exp. Bot. 54:1743–1752.

    Article  CAS  PubMed  Google Scholar 

  • Leung, J., and Giraudat, J. 1998. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:1999–222.

    Article  Google Scholar 

  • Li, L. G., Li, S. F., Tao, Y., and Kitagawa, Y. 2000. Molecular cloning of a novel water channel from rice: Its products expression in Xenopus oocytes and involvement in chilling tolerance. Plant Sci. 154:43–51.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, J., Syvertsen, J. P., Kriedemann, P. E., and Farquhar, G. D. 1992. Low conductances for CO2 diffusion from stomata to the site of carboxylation in leaves of woody species. Plant Cell Environ. 15:873–899.

    Article  CAS  Google Scholar 

  • Loreto, F., Harley, P. C., Di, M. M., and Sharkey, T. D. 1992. Estimation of mesophyll conductance to Co2 flux by three different methods. Plant Physiol. 98:1437–1433.

    Article  PubMed  Google Scholar 

  • Loreto, F., DiMarco, G., Tricoli, D., and Sharkey, T. D. 1994. Measurements of meso-128 phyll conductance, photosynthetic electron transport and alternative electron sinks of field-grown wheat leaves. Photosynth. Res. 41:397–403.

    Article  CAS  Google Scholar 

  • Loreto, F., Delfine, S., Di Marco, G. 1999. Estimation of photorespiratory carbon dioxide recycling during photosynthesis. Aust. J. Plant Physiol. 26:733–736.

    Article  Google Scholar 

  • Loreto, F., Velikova, V., Di Marco, G. 2001. Respiration in the light measured by 12CO2 emission in 13CO2 atmosphere in maize leaves. Aust. J. Plant Physiol. 28:1103–1108.

    Google Scholar 

  • Ludwig, L. J., Canvin, D. T. 1971. The rate of photorespiration during photosynthesis and the relationship of the substrate of light respiration to the products of photosynthesis in sunflower leaves. Plant Physiol. 48:712–719.

    Article  CAS  PubMed  Google Scholar 

  • Maier-Maercker, U. 1999. New light on the importance of peristomatal transpiration. J. Exp. Bot. 26:9–16.

    Google Scholar 

  • Makino A., Nakano H., and Mae T. 1994. Effects of growth temperature on the responses of ribulose-1,5-bisphosphate carboxylase, electron transport components, and sucrose synthesis enzymes to leaf nitrogen in rice, and their relationships to photosynthesis. Plant Physiol. 105:1231–1238.

    CAS  PubMed  Google Scholar 

  • Mawson, B. T., and Zaugg, M. W. 1994. Modulation of light-dependent stomatal opening in isolated epidermis following induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum. J. Plant Physiol. 144:740–746.

    CAS  Google Scholar 

  • Maxwell, K., Von Caemmerer, S., and Evans, J. R.. 1997. Is a low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism? Aust. J. Plant Physiol. 24:777–786.

    Article  CAS  Google Scholar 

  • Meidner, H., and Mansfield, T. A. 1968. Physiology of Stomata. Maidenhead: McGraw-Hill.

    Google Scholar 

  • Meyer, S., and Genty, B. 1998. Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging. Significance of Ci estimation from leaf gas exchange. Plant Physiol. 116:947–957.

    Article  CAS  PubMed  Google Scholar 

  • Mott, K. A., and Buckley, T. N. 2000a. Stomatal heterogeneity. J. Exp. Bot. 49:407–417.

    Article  Google Scholar 

  • Mott, K. A., and Buckley, T. N. 2000b. Patchy stomatal conductance: Emergent collective behaviour of stomata. Trend Plant Sci. 5:258–262.

    Article  CAS  Google Scholar 

  • Mott, K. A., and Franks, P. J. 2001. The role of epidermal turgor in stomatal interactions following a local perturbationin himidity. Plant Cell Environ. 24:657–662.

    Article  Google Scholar 

  • Mott, K. A., and Parkhurst, D. 1991. Stomatal responses to humidity in air and helox. Plant Cell Environ. 18:431–438.

    Google Scholar 

  • Nakhoul, N. L., Davis, B. A. Romero, M. F., and Boron, W. F. 1998. Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am. J. Physiol. 274C:543–548.

    Google Scholar 

  • Niinemets, Ü. 1999. Components of leaf dry mass per area—thickness and density—alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist 144:35–47.

    Article  Google Scholar 

  • Nobel, P. S. 1999. Physicochemical and environmental plant physiology, 2nd edition. San Diego: Academic Press.

    Google Scholar 

  • Ogawa, T., Ishikawa, H., Shimada, K., and Shibata, K. 1978. Synergistic action of red and blue light and action spectrum for malate formation in guard cells of Vicia faba L. Planta 142:61–65.

    Article  CAS  Google Scholar 

  • Outlaw, W. H. Jr. 1983. Current concepts on the role of potassium in stomatal movements. Physiol. Plant 59:302–311.

    Article  CAS  Google Scholar 

  • Pachepsky, L. B., and Acock, B. 1996. A model 2DLEAF of leaf gas exchange: Development, validation, and ecological application. Ecol. Model 93:1–18.

    Article  CAS  Google Scholar 

  • Parkhurst, D. F. 1994. Diffusion of CO2 and other gases inside leaves. New Phytologist 126:449–479.

    Article  CAS  Google Scholar 

  • Parkhurst, D. F., and Mott, K. A. 1990. Intercellular diffusion limits to CO2 uptake in leaves. Plant Physiol. 94:1024–1032.

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst, D. F., Wong S. C., Farquhar, G. D., and Cowan, I. R.. 1988. Gradients of intercellular CO2 levels across the leaf mesophyll. Plant Physiol. 86:1032–1037.

    Article  CAS  PubMed  Google Scholar 

  • Piel, C., Frak, E., Le Roux, X., and Genty, B. 2002. Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut. J. Exp. Bot. 53:2423–2430.

    Article  CAS  PubMed  Google Scholar 

  • Pinelli, P., and Loreto, F. 2003. 12CO2 emission from different metabolic pathways measured in illuminated and darkened C3 and C4 leaves at low, atmospheric and elevated CO2 concentration. J. Exp. Bot. 54:1761–1769.

    Article  CAS  PubMed  Google Scholar 

  • Pons, T. L., and Welschen, R. A. M. 2002. Overestimation of respiration rates in commercially available clamp-on leaf chambers. Complications with measurement of net photosynthesis. Plant Cell Environ. 25:1367–1372.

    Article  Google Scholar 

  • Pospisilova, J., and Santrucek, J. 1994. Stomatal patchiness. Biol. Plant. 36:481–510.

    Article  Google Scholar 

  • Ramesh Prasad, G. V., Coury, L. A. Finn, F., and Zeidel, M. L. 1998. Reconstituted aquaporin 1 water channels transport CO2 across membranes. J. Biol. Chem. 273:33123–33126.

    Article  Google Scholar 

  • Raschke, K. 1979. Movement of stomata. In: Encyclopedia of Plant Physiology, New Series, Vol. 7. W. Haupt and M. E. Feinleib (eds.), pp. 383–441. Berlin: Springer-Verlag.

    Google Scholar 

  • Renou, J. L., Gerbaud, A., Just, D., and Andre, M. 1990. Differing substomatal and chloroplastic CO2 concentrations in water-stressed wheat. Planta 182:415–419.

    Article  CAS  Google Scholar 

  • Roupsard, O., Gross, P., and Dreyer, E. 1996. Limitation of photosynthetic activity by CO2 availability in the chloroplasts of oak leaves from different species and during drought. Ann. Sci. Forestieres 53:243–254.

    Article  Google Scholar 

  • Ridolfi, M., and Dreyer, E. 1997. Responses to water stress in an ABA-unresponsive hybrid poplar (Populus koreana × trichocarpa cv peace). 3. Consequences for photosynthetic carbon assimilation. New Phytologist 135:31–40.

    Article  CAS  Google Scholar 

  • Sakata, T., and Yokoi, Y. 2002. Analysis of the O-2 dependency in leaf-level photosynthesis of two Reynoutria japonica populations growing at different altitudes. Plant Cell Environ. 25:65–74.

    Article  Google Scholar 

  • Scartazza, A., Lauteri, M., Guido, M. C., and Brugnoli, E. 1998. Carbon isotope discrimination in leaf and stem sugars, water-use efficiency and mesophyll conductance during different developmental stages in rice subjected to drought. Aust. J. Plant Physiol. 25:489–498.

    Article  CAS  Google Scholar 

  • Schnabl, H. 1978. The effect of Cl upon the sensitivity of starch-containing and starch-deficient stomata and guard cell protoplasts towards potassium ions, fusicoccin and abscisic acid. Planta 144:95–100.

    Article  CAS  Google Scholar 

  • Schroeder, J. I., Ward, J. M., and Gassmann, W. 1994. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: Biophysical implications for K+ uptake. Annu. Rev. Biophys. Biomol. Struct. 23:441–471.

    Article  CAS  PubMed  Google Scholar 

  • Senn, G. 1908. Die Gestalts-und Lägeveranderung der Pflanzen-Chromatophoren. Leipzig: Verlag von Wilheim Engelmann.

    Google Scholar 

  • Sharkey, T. D., and Raschke, K. 1981. Effects of light quality on stomatal opening in leaves Xanthium strumarium L. Plant Physiol. 68:1170–1174.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey, T. D., Vassey, T. L., Vancerveer, P. J., and Vierstra, R. D. 1991. Carbon metabolism enzyme and photosynthesis in transgenic tobacco (Nicotiana tabacum L.) having excess phytochrome. Planta 185:287–296.

    Article  CAS  Google Scholar 

  • Shimazaki, K.-I. 2001. Stomatal movemement. In: Responses to Environmental Variables in Plants. I. Terashima (ed.), pp. 40–48, Tokyo: Asakura (in Japanese).

    Google Scholar 

  • Shimazaki, K.-I., and Kinoshita, T. 2001. Signal transduction mediated by blue light receptor: Blue light response in stomatal guard cells. In: Photosensing in Plants. M. Wada, S. Tokutomi, A. Ngatani, and M. Hasebe (eds.), pp. 114–122. Tokyo: Shujyunsha (in Japanese).

    Google Scholar 

  • Shimazaki, K.-I., Iino, M., and Zeiger, E. 1986. Blue light-dependent proton extrusion by guard cell protoplasts of Vicia faba. Nature 319:324–326.

    Article  CAS  Google Scholar 

  • Siebke, K., and Weis, E. 1995a. Imaging of chlorophyll-a-fluorescence in leaves—Topography of photosynthetic oscillations in leaves of Glechoma hederacea. Photosynth. Res. 45:225–237.

    Article  CAS  Google Scholar 

  • Siebke, K., and Weis, E. 1995b. Assimilation images of leaves of Glechoma hederacea—Analysis of non-synchronous stomata related oscillations. Planta 196:155–165.

    Article  CAS  Google Scholar 

  • Stålfelt, M. G. 1955. The stoma as a hydrophotic regulator of the water deficit of the plant. Physiol. Plant 8:572–593.

    Article  Google Scholar 

  • Syvertsen, J. P., Lloyd, J., McConchie, C., Kriedemann P. E., and Farquhar, G. D. 1995. On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ. 18:149–157.

    Article  Google Scholar 

  • Sze, H., Li, X., and Palmgren, M. G. 1999. Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis. Plant Cell 11:677–689.

    Article  CAS  PubMed  Google Scholar 

  • Takagi, S. 2000. Roles for actin filaments in chloroplast motility and anchoring. In: Actin: A Dynamic Framework for Multiple Plant Cell Functions. C. J. Staiger, F. Baluska, D. Volkmann, and P. W. Barlow (eds.), pp. 203–212. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Talbott, L. D., and Zeiger, E. 1998. The role of sucrose in guard cell osmoregulation. J. Exp. Bot. 49:329–337.

    Article  Google Scholar 

  • Terashima, I. 1992. Anatomy of non-uniform leaf photosynthesis. Photosynth. Res. 31:195–212.

    Article  CAS  Google Scholar 

  • Terashima, I., and Ono, K. 2002. Effects of HgCl2 on CO2 dependence of leaf photosynthesis: Evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane. Plant Cell Physiol. 43:70–78.

    Article  CAS  PubMed  Google Scholar 

  • Terashima, I., Wong, S.-C., Osmond, C. B., and Farquhar, G. D. 1988. Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant Cell Physiol. 29:385–394.

    CAS  Google Scholar 

  • Terashima, I., Miyazawa, S. I., and Hanba, Y. T. 2001. Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. J. Plant Res. 114:93–105.

    Article  CAS  Google Scholar 

  • Uehlein, N., Lovisolo, C., Siefritz, F., and Kaldenhoff, R. 2003. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737.

    Article  CAS  PubMed  Google Scholar 

  • Van der Werf, A., Poorter, H., and Lambers, H. 1994. Respiration is dependent on a species’ inherent growth rate and on the nitrogen supply to the plants. In: A Whole Plant Perspective on Carbon-nitrogen Interactions. J. Roy and E. Garnier (eds.), pp. 83–103. The Hague: SPB Academic Publishing BV.

    Google Scholar 

  • von Caemmerer, S., and Evans, J. R. 1991. Determination of the average partial pressure of CO2 in chloroplasts from leaves of several C3 species. Aust. J. Plant Physiol. 18:287–305.

    Article  Google Scholar 

  • Weyers, J. D. B., and Lawson, T. 1997. Heterogeneity on stomatal characteristics. Adv. Bot. Res. 26:317–351.

    Article  Google Scholar 

  • Yang, B., Fukuda, N., van Hoek, A., Matthay, M. A., Ma, T., and Verkman, A. S. 2000. Carbon dioxide permeability of aquaporin-1 measured in erythrocytes and lung of aquaporin-1 nul mice and in reconstituted proteoliposomes. J. Biol. Chem. 275:2686.

    Article  CAS  PubMed  Google Scholar 

  • Yano, S., and Terashima. I. 2001. Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation in Chenopodium album. Plant Cell Physiol. 42:1303–1310.

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart, J. A. D., and Creelman, R. A. 1988. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:439–473.

    Article  CAS  Google Scholar 

  • Zeiger, E., and Hepler, P. K. 1977. Light and stomatal function: Blue light stimulates swelling of guard cell protoplasts. Science 196:887–889.

    Article  CAS  PubMed  Google Scholar 

  • Zeiger, E., Talbott, L. D., Frechilla, S., Srivastava, A., and Zhu, J. X. 2002. The guard cell chloroplast: A perspective for the twenty-first century. [review] New Phytologist 153:415–424.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Evans, J.R., Terashima, I., Hanba, Y., Loreto, F. (2004). Chloroplast to Leaf. In: Smith, W.K., Vogelmann, T.C., Critchley, C. (eds) Photosynthetic Adaptation. Ecological Studies, vol 178. Springer, New York, NY. https://doi.org/10.1007/0-387-27267-4_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-27267-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22079-6

  • Online ISBN: 978-0-387-27267-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics