Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 17))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JB, Neely ST (1997) Modeling the relation between the intensity just-noticeable difference andloudness for pure tones and wideband noise. J Acoust Soc Am 102:3628–3646.

    Article  Google Scholar 

  • ANSI (1969) American National Standards Methods for the Calculation of the Articulation Index. ANSI S3.5-1969. New York: American National Standards Institute.

    Google Scholar 

  • ANSI (1997) American National Standards Methods for the Calculation of the Speech Intelligibility Index. ANSI S3.5-1997. New York: American National Standards Institute.

    Google Scholar 

  • Bacon SP, Viemeister NF (1985) Temporal modulation transfer functions in normal-hearing and hearing-impaired listeners. Audiology 24:117–134.

    CAS  PubMed  Google Scholar 

  • Bilger RC (1977) Psychoacoustic evaluation of present prostheses. Arch Otol Rhinol Laryngol 86:92–104.

    CAS  Google Scholar 

  • Brackmann DE, Hitselberger WE, Nelson RA, Moore J, Waring MD, Portillo F, Shannon RV, Telischi FF (1993) Auditory brainstem implant. I. Issues in surgical implantation. Otolaryngol Head Neck Surg 108:624–633.

    CAS  PubMed  Google Scholar 

  • Bruce IC, Irlicht LS, White MW, O’Leary SJ, Dynes S, Javel E, Clark GM (1999a) A stochastic model of the electrically stimulated auditory nerve: pulse-train response. IEEE Trans Biomed Eng 46:630–637.

    Article  CAS  PubMed  Google Scholar 

  • Bruce IC, White MW, Irlicht LS, O’Leary SJ, Dynes S, Javel E, Clark GM (1999b) A stochastic model of the electrically stimulated auditory nerve: single-pulse response. IEEE Trans Biomed Eng 46:617–629.

    Article  CAS  PubMed  Google Scholar 

  • Bruce IC, White MW, Irlicht LS, O’Leary SJ, Clark GM (1999c) The effects of stochastic neural activity in a model predicting intensity perception with cochlear implants: low-rate stimulation. IEEE Trans Biomed Eng 46:1393–1404.

    Article  CAS  PubMed  Google Scholar 

  • Burns EM, Viemeister NF (1976) Nonspectral pitch. J Acoust Soc Am 60:863–869.

    Article  Google Scholar 

  • Busby PA, Clark GM (2000) Pitch estimation by early-deafened subjects using a multiple-electrode cochlear implant. J Acoust Soc Am 107:547–558.

    Article  CAS  PubMed  Google Scholar 

  • Busby PA, Tong YC, Clark GM (1993) The perception of temporal modulations by cochlear implant patients. J Acoust Soc Am 94:124–131.

    Article  CAS  PubMed  Google Scholar 

  • Cazals Y, Pelizzone M, Saudan O, Boex C (1994) Low-pass filtering in amplitude modulation detection associated with vowel and consonant identification in subjects with cochlear implants. J Acoust Soc Am 96:2048–2054.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M (1999) Effects of stimulation mode on threshold and loudness growth in multielectrode cochlear implants. J Acoust Soc Am 105:850–860.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Robert ME (2001) Noise enhances modulation sensitivity in cochlear implant listeners: stochastic resonance in a prosthetic sensory system? J Assoc Res Otolaryngol 2:159–171.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Shannon RV (1998) Forward masked excitation patterns in multielectrode electrical stimulation. J Acoust Soc Am 103:2565–2572.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Fu QJ, Shannon RV (2000) Effects of phase duration and electrode separation on loudness growth in cochlear implant listeners. J Acoust Soc Am 107:1637–1644.

    Article  CAS  PubMed  Google Scholar 

  • Cohen LT, Busby PA, Whitford LA, Clark GM (1996) Cochlear implant place psychophysics 1. Pitch estimation with deeply inserted electrodes. Audiol Neurootol 1:265–277.

    Article  CAS  PubMed  Google Scholar 

  • Collins LM, Zwolan TA, Wakefield GH (1997) Comparison of electrode discrimination, pitch ranking, and pitch scaling data in postlingually deafened adult cochlear implant subjects. J Acoust Soc Am 101:440–455.

    Article  CAS  PubMed  Google Scholar 

  • Cosendai G, Pelizzone M (2001) Effects of the acoustical dynamic range on speech recognition with cochlear implants. Audiology 40:272–281.

    CAS  PubMed  Google Scholar 

  • Dawson PW, Skok M, Clark GM (1997) The effect of loudness imbalance between electrodes in cochlear implant users. Ear Hear 18:156–165.

    CAS  PubMed  Google Scholar 

  • Dawson PW, McKay CM, Busby PA, Grayden DB, Clark GM (2000) Electrode discrimination and speech perception in young children using cochlear implants. Ear Hear 21:597–607.

    Article  CAS  PubMed  Google Scholar 

  • Dobie RA, Dillier N (1985) Some aspects of temporal coding for single-channel electrical stimulation of the cochlea. Hear Res 18:41–55.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson GS, Viemeister NF, Nelson DA (1997) Psychometric functions and temporal integration in electric hearing. J Acoust Soc Am 101:3706–3721.

    Article  CAS  PubMed  Google Scholar 

  • Dorman MF, Smith L, Parkin JL (1993) Loudness balance between acoustic and electric stimulation by a patient with a multichannel cochlear implant. Ear Hear 14:290–292.

    Article  CAS  PubMed  Google Scholar 

  • Dunn HK, White SD (1940) Statistical measurements on conversational speech. J Acoust Soc Am 11:278–288.

    Article  Google Scholar 

  • Dynes SB, Delgutte B (1992) Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea. Hear Res 58:79–90.

    Article  CAS  PubMed  Google Scholar 

  • Eddington DK, Dobelle WH, Brackmann DE, Mladejovsky MG, Parkin JL (1978) Auditory prostheses research with multiple channel intracochlear stimulation in man. Arch Otol Rhinol Laryngol 87:1–39.

    CAS  Google Scholar 

  • Ekman G (1959) Weber’s law and related functions. J Psychol 47:343–352.

    Google Scholar 

  • Fechner GT (1966) Elements of Psychophysics, Vol. I. Helmut E. Adler (trans). New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Formby C (1985) Differential sensitivity to tonal frequency and to the rate of amplitude modulation of broadband noise by normally hearing listeners. J Acoust Soc Am 78:70–77.

    Article  CAS  PubMed  Google Scholar 

  • Forrest TG, Green DM (1987) Detection of partially filled gaps in noise and the temporal modulation transfer function. J Acoust Soc Am 82:1933–1943.

    Article  CAS  PubMed  Google Scholar 

  • Fu QJ (2002) Temporal processing and speech recognition in cochlear implant users. Neuroreport 16:1635–1639.

    Article  Google Scholar 

  • Fu QJ, Shannon RV (1998) Effects of amplitude non-linearity on phoneme recognition by cochlear implant users and normal-hearing listeners. J Acoust Soc Am 105:2570–2577.

    Article  Google Scholar 

  • Fu QJ, Shannon RV (2000) Effects of dynamic range and amplitude mapping on phoneme recognition in Nucleus-22 cochlear implant users. Ear Hear 21:227–235.

    Article  CAS  PubMed  Google Scholar 

  • Furui S (1988) Digital speech processing, synthesis, and recognition. New York: Marcel Dekker, pp. 139–204.

    Google Scholar 

  • Geurts L, Wouters J (1999) Enhancing the speech envelope of continuous interleaved sampling processors for cochlear implants. J Acoust Soc Am 105: 2476–2484.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann R, Klinke R (1987) Impulse pattern in auditory-nerve fibers to extraand intra-cochlear electrical stimulation. In: Banfai P (ed) Cochlear Implants: Current Situation, International Cochlear Implant Symposium. Duren, Germany, pp. 73–86.

    Google Scholar 

  • Hartmann R, Topp G, Klinke R (1984) Discharge patterns of cat primary auditory fibers with electrical stimulation of the cochlea. Hear Res 13:47–62.

    Article  CAS  PubMed  Google Scholar 

  • Hellman WS, Hellman RP (2001) Revisiting relations between loudness and intensity discrimination. J Acoust Soc Am 109:2098–2102.

    Article  CAS  PubMed  Google Scholar 

  • Houtsma AJ, Durlach NI, Braida LD (1980) Intensity perception. XI. Experimental results on the relation of intensity resolution to loudness matching. J Acoust Soc Am 68:807–813.

    Article  CAS  PubMed  Google Scholar 

  • Javel E, Tong YC, Shepherd RK, Clark GM (1987) Responses of cat auditory nerve fibers to biphasic electrical current pulses. Arch Otol Rhinol Laryngol 96:26–30.

    Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone BM, Patuzzi R, Yates GK (1986) Basilar membrane measurements and the traveling wave. Hear Res 22:147–153.

    Article  CAS  PubMed  Google Scholar 

  • Kiang NY, Moxon EC (1972) Physiological considerations in artificial stimulation of the inner ear. Arch Otol Rhinol Laryngol 81:714–730.

    CAS  Google Scholar 

  • Kohlrausch A, Fassel R, Dau T (2000) The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers. J Acoust Soc Am 108:723–734.

    Article  PubMed  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455.

    Article  CAS  PubMed  Google Scholar 

  • Lim HH, Tong YC, Clark GM (1989) Forward masking patterns produced by intracochlear electrical stimulation of one and two electrode pairs in the human cochlea. J Acoust Soc Am 86:971–980.

    Article  CAS  PubMed  Google Scholar 

  • Litvak L, Delgutte B, Eddington D (2001) Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains. J Acoust Soc Am 110: 368–379.

    Article  CAS  PubMed  Google Scholar 

  • Loizou PC, Dorman M, Fitzke J (2000a) The effect of reduced dynamic range on speech understanding: implications for patients with cochlear implants. Ear Hear 21:25–31.

    Article  CAS  PubMed  Google Scholar 

  • Loizou PC, Poroy O, Dorman M (2000b) The effect of parametric variations of cochlear implant processors on speech understanding. J Acoust Soc Am 108:790–802.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzi C, Gallego S, Patterson RD (1997) Discrimination of temporal asymmetry in cochlear implantees. J Acoust Soc Am 102:482–485.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzi C, Gallego S, Patterson RD (1998) Amplitude compression in cochlear implants artificially restricts the perception of temporal asymmetry. Br J Audiol 32:367–374.

    CAS  PubMed  Google Scholar 

  • McDermott HJ, McKay CM (1997) Musical pitch perception with electrical stimulation of the cochlea. J Acoust Soc Am 101:1622–1631.

    Article  CAS  PubMed  Google Scholar 

  • McDermott HJ, McKay CM, Vandali AE (1992) A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant. J Acoust Soc Am 91:3367–3371.

    Article  CAS  PubMed  Google Scholar 

  • McGill WJ, Teich MC (1995) Alerting signals and detection in a sensory network. J Math Psychol 39:146–162.

    Article  Google Scholar 

  • McKay CM, McDermott HJ, Clark GM (1996) The perceptual dimensions of singleelectrode and nonsimultaneous dual-electrode stimuli in cochlear implantees. J Acoust Soc Am 99:1079–1090.

    Article  CAS  PubMed  Google Scholar 

  • McKay CM, Remine MD, McDermott HJ (2001) Loudness summation for pulsatile electrical stimulation of the cochlea: effects of rate, electrode separation, level, and mode of stimulation. J Acoust Soc Am 110:1514–1524.

    Article  CAS  PubMed  Google Scholar 

  • Miller CA, Abbas PJ, Robinson BK, Rubinstein JT, Matsuoka AJ (1999) Electrically evoked single-fiber action potentials from cat: responses to monopolar, monophasic stimulation. Hear Res 130:197–218.

    Article  CAS  PubMed  Google Scholar 

  • Moore BC, Glasberg BR (2001) Temporal modulation transfer functions obtained using sinusoidal carriers with normally hearing and hearing-impaired listeners. J Acoust Soc Am 110:1067–1073.

    Article  CAS  PubMed  Google Scholar 

  • Moore BC, Glasberg BR, Plack CJ, Biswas AK (1988) The shape of the ear’s temporal window. J Acoust Soc Am 83:1102–1116.

    Article  CAS  PubMed  Google Scholar 

  • Nelson DA, Van Tasell DJ, Schroder AC, Soli S, Levine S (1995) Electrode ranking of “place pitch” and speech recognition in electrical hearing. J Acoust Soc Am 98:1987–1999.

    Article  CAS  PubMed  Google Scholar 

  • Nelson DA, Schmitz JL, Donaldson GS, Viemeister NF, Javel E (1996) Intensity discrimination as a function of stimulus level with electric stimulation. J Acoust Soc Am 100:2393–2414.

    Article  CAS  PubMed  Google Scholar 

  • NIH Consensus Statement (1995) Cochlear implants in adults and children. Vol. 13, No. 2, pp. 1–30.

    Google Scholar 

  • Otto SR, Brackmann DE, Hitselberger WE, Shannon RV, Kuchta J (2002) Multichannel auditory brainstem implant: update on performance in 61 patients. J Neurosurg 96:1063–1071.

    Article  PubMed  Google Scholar 

  • Oxenham AJ, Plack CJ (2000) Effects of masker frequency and duration in forward masking: further evidence for the influence of peripheral nonlinearity. Hear Res 150:258–266.

    Article  CAS  PubMed  Google Scholar 

  • Parkins CW, Colombo J (1987) Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes. Hear Res 31:267–285.

    Article  CAS  PubMed  Google Scholar 

  • Patterson RD (0994a) The sound of a sinusoid: spectral models. J Acoust Soc Am 96:1409–1418.

    Article  Google Scholar 

  • Patterson RD (1994b) The sound of a sinusoid: time-interval models. J Acoust Soc Am 96:1419–1428.

    Article  Google Scholar 

  • Pfingst BE, Morris DJ (1993) Stimulus features affecting psychophysical detection thresholds for electrical stimulation of the cochlea. II. Frequency and interpulse interval. J Acoust Soc Am 94:1287–1294.

    Article  CAS  PubMed  Google Scholar 

  • Pijl S, Schwarz DW (1995) Melody recognition and musical interval perception by deaf subjects stimulated with electrical pulse trains through single cochlear implant electrodes. J Acoust Soc Am 98:886–895.

    Article  CAS  PubMed  Google Scholar 

  • Preece JP, Tyler RS (1989) Temporal-gap detection by cochlear prosthesis users. J Speech Hear Res 32:849–856.

    CAS  PubMed  Google Scholar 

  • Rabinowitz WM, Lim JS, Braida LD, Durlach NI (1976) Intensity perception. VI. Summary of recent data on deviations from Weber’s law for 1000-Hz tone pulses. J Acoust Soc Am 59:1506–1509.

    Article  CAS  PubMed  Google Scholar 

  • Ruggero MA (1992) Responses to sound of the basilar membrane of the mammalian cochlea. Curr Opin Neurobiol 2:449–456.

    Article  CAS  PubMed  Google Scholar 

  • Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am 56:1835–1847.

    Article  CAS  PubMed  Google Scholar 

  • Scharf B, Magnan J, Chays A (1997) On the role of the olivocochlear bundle in hearing: 16 case studies. Hear Res 103:101–122.

    Article  CAS  PubMed  Google Scholar 

  • Schlauch RS, Harvey S, Lanthier N (1995) Intensity resolution and loudness in broadband noise. J Acoust Soc Am 98:1895–1902.

    Article  CAS  PubMed  Google Scholar 

  • Schlauch RS, DiGiovanni JJ, Ries DT (1998) Basilar membrane nonlinearity and loudness. J Acoust Soc Am 103:2010–2020.

    Article  CAS  PubMed  Google Scholar 

  • Schroder AC, Viemeister NF, Nelson DA (1994) Intensity discrimination in normal-hearing and hearing-impaired listeners. J Acoust Soc Am 96:2683–2693.

    Article  CAS  PubMed  Google Scholar 

  • Shannon RV (1983) Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics. Hear Res 11:157–189.

    Article  CAS  Google Scholar 

  • Shannon RV (1986) Temporal processing in cochlear implants. In: Collins MJ, Glattke TJ, Harker LA (eds) Sensorineural Hearing Loss: Mechanisms, Diagnosis, Treatment. Iowa City, IA: University of Iowa Press, pp. 349–368.

    Google Scholar 

  • Shannon RV (1989a) A model of threshold for pulsatile electrical stimulation of cochlear implants. Hear Res 40:197–204.

    Article  CAS  PubMed  Google Scholar 

  • Shannon RV (1989b) Detection of gaps in sinusoids and pulse trains by patients with cochlear implants. J Acoust Soc Am 85:2587–2592.

    Article  CAS  PubMed  Google Scholar 

  • Shannon RV (1992) Temporal modulation transfer functions in patients with cochlear implants. J Acoust Soc Am 91:2156–2164.

    Article  CAS  PubMed  Google Scholar 

  • Shannon RV (1993) Psychophysics of electrical stimulation. In: Tyler RS (Ed) Cochlear Implants: Audiological Foundations. San Diego, CA: Singular Publishing Group Inc, pp. 357–388.

    Google Scholar 

  • Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304.

    CAS  PubMed  Google Scholar 

  • Skinner MW, Holden LK, Holden TA (1997a) Parameter selection to optimize speech recognition with the Nucleus implant. Otolaryngol Head Neck Surg 117: 188–195.

    Article  CAS  PubMed  Google Scholar 

  • Skinner MW, Holden LK, Holden TA, Demorest ME, Fourakis MS (1997b) Speech recognition at simulated soft, conversational and raised-to-loud vocal efforts by adults with cochlear implants. J Acoust Soc Am 101:3766–3782.

    Article  CAS  PubMed  Google Scholar 

  • Stevens S (1961) To honor Fechner and repeal his law. Science 133:80–86.

    PubMed  Google Scholar 

  • Svirsky MA, Robbins AM, Kirk KI, Pisoni DB, Miyamoto RT (2000) Language development in profoundly deaf children with cochlear implants. Psychol Sci 11: 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Terhardt E (1974) Pitch, consonance, and harmony. J Acoust Soc Am 55:1061–1069.

    Article  CAS  PubMed  Google Scholar 

  • Townshend B, Cotter N, Van Compernolle D, White RL (1987) Pitch perception by cochlear implant subjects. J Acoust Soc Am 82:106–115.

    Article  CAS  PubMed  Google Scholar 

  • van den Honert C, Stypulkowski PH (1984) Physiological properties of the electrically stimulated auditory nerve. II. Single fiber recordings. Hear Res 14:225–243.

    Article  PubMed  Google Scholar 

  • Viemeister NF (1979) Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 66:1364–1380.

    Article  CAS  PubMed  Google Scholar 

  • Viemeister NF, Bacon SP (1988) Intensity discrimination, increment detection, and magnitude estimation for 1-kHz tones. J Acoust Soc Am 84:172–178.

    Article  CAS  PubMed  Google Scholar 

  • Volta A (1800) On the electricity excited by mere contact of conducting substances of different kinds. R Soc Philos Trans 90:403–431.

    Google Scholar 

  • Wier CC, Jesteadt W, Green DM (1977) Frequency discrimination as a function of frequency and sensation level. J Acoust Soc Am 61:178–184.

    Article  CAS  PubMed  Google Scholar 

  • Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM (1991) Better speech recognition with cochlear implants. Nature 352:236–238.

    Article  CAS  PubMed  Google Scholar 

  • Yates GK, Winter IM, Robertson D (1990) Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range. Hear Res 45:203–219.

    Article  CAS  PubMed  Google Scholar 

  • Yates GK, Johnstone BM, Patuzzi RB, Robertson D (1992) Mechanical preprocessing in the mammalian cochlea. Trends Neurosci 15:57–61.

    Article  CAS  PubMed  Google Scholar 

  • Zeng FG (2002) Temporal pitch in electric hearing. Hear Res 174:101–106.

    Article  PubMed  Google Scholar 

  • Zeng FG, Galvin JJ (1999) Amplitude compression and phoneme recognition in cochlear implant listeners. Ear Hear 20:60–74.

    CAS  PubMed  Google Scholar 

  • Zeng FG, Shannon RV (1992) Loudness balance between acoustically and electrically stimulated ears. Hear Res 60:231–235.

    Article  CAS  PubMed  Google Scholar 

  • Zeng FG, Shannon RV (1994) Loudness-coding mechanisms inferred from electric stimulation of the human auditory system. Science 264:564–566.

    CAS  PubMed  Google Scholar 

  • Zeng, FG, Shannon RV (1995) Loudness of simple and complex stimuli in electric hearing. Ann Otol Rhinol Laryngol 104 (Suppl 166): 235–238.

    Google Scholar 

  • Zeng FG, Shannon RV (1999) Psychophysical laws revealed by electric hearing. Neuroreport 10:1931–1935.

    Article  CAS  PubMed  Google Scholar 

  • Zeng FG, Turner CW, Relkin EM (1991) Recovery from prior stimulation. II. Effects upon intensity discrimination. Hear Res 55:223–230.

    Article  CAS  PubMed  Google Scholar 

  • Zeng FG, Shannon RV, Hellman WS (1998a) Physiological processes underlying psychophysical laws. In: Palmer A, Rees A, Summerfield AQ, Meddis R (eds) Psychophysical and Physiological Advances in Hearing. London: Whurr Publishers, pp. 473–481.

    Google Scholar 

  • Zeng FG, Galvin JJ, Zhang CY (1998b) Encoding loudness by electric stimulation of the auditory nerve. Neuroreport 9:1845–1848.

    CAS  PubMed  Google Scholar 

  • Zeng FG, Martino KM, Linthicum FH, Soli SD (2000) Auditory perception in vestibular neurectomy subjects. Hear Res 142:102–112.

    Article  CAS  PubMed  Google Scholar 

  • Zeng FG, Grant G, Niparko J, Galvin J, Shannon R, Opie J, Segel P (2002) Speech dynamic range and its effect on cochlear implant performance. J Acoust Soc Am 111:377–386.

    Article  PubMed  Google Scholar 

  • Zwislocki JJ, Jordan HN (1986) On the relations of intensity jnd’s to loudness and neural noise. J Acoust Soc Am 79:772–780.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Zeng, FG. (2004). Compression and Cochlear Implants. In: Bacon, S.P., Fay, R.R., Popper, A.N. (eds) Compression: From Cochlea to Cochlear Implants. Springer Handbook of Auditory Research, vol 17. Springer, New York, NY. https://doi.org/10.1007/0-387-21530-1_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-21530-1_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00496-9

  • Online ISBN: 978-0-387-21530-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics