Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 17))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramovitz RS (1980) Frequency shaping and multiband compression in hearing aids. J Commun Disord 13:483–488.

    Article  CAS  PubMed  Google Scholar 

  • Boike KT, Souza PE (2000) Effect of compression ratio on speech recognition and speech-quality ratings with wide dynamic range compression amplification. J Speech Lang Hear Res 43:456–468.

    CAS  PubMed  Google Scholar 

  • Boothroyd A, Springer S, Smith L, Shulman J (1988) Amplitude compression and profound hearing loss. J Speech Hear Res 31:362–376.

    CAS  PubMed  Google Scholar 

  • Braida LD, Durlach NI, Lippmann RP, Hicks BL, Rabinowitz WM, Reed CM (1979) Hearing aids—a review of past research of linear amplification, amplitude compression and frequency lowering. ASHA Monograph No. 19. Rockville MD: American Speech-Language-Hearing Association.

    Google Scholar 

  • Bustamante DK, Braida LD (1987a) Principal-component amplitude compression for the hearing impaired. J Acoust Soc Am 82:1227–1242.

    Article  CAS  PubMed  Google Scholar 

  • Bustamante D, Braida L (1987b) Multiband compression limiting for hearing-impaired listeners. J Rehabil Res Dev 24:149–160.

    CAS  PubMed  Google Scholar 

  • Buus S, Florentine M (2002) Growth of loudness in listeners with cochlear hearing losses: recruitment reconsidered. J Assoc Res Otolaryngol 3:120–139.

    Article  PubMed  Google Scholar 

  • Davis H, Stevens SS, Nichols RH Jr, Hudgins CV, Marquis RJ, Peterson GE, Ross DA (1947) Hearing Aids: An Experimental Study of Design Objectives. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • De Gennaro S, Braida L, Durlach N (1986) Multichannel syllabic compression for severely impaired listeners. J Rehabil Res Dev 23:17–24.

    PubMed  Google Scholar 

  • Dillon H (2001) Hearing Aids. New York: Thieme.

    Google Scholar 

  • Dreschler WA (1988) Dynamic range reduction by peak clipping or compression and its effects on phoneme perception in hearing-impaired listeners. Scand Audiol 17:45–51.

    CAS  PubMed  Google Scholar 

  • Dreschler WA (1989) Phoneme perception via hearing aids with and without compression and the role of temporal resolution. Audiology 28:49–60.

    CAS  PubMed  Google Scholar 

  • Dreschler WA, Eberhardt D, Melk PW (1984) The use of single-channel compression for the improvement of speech intelligibility. Scand Audiol 13:231–236.

    CAS  PubMed  Google Scholar 

  • Drullman R, Smoorenburg G (1997) Audio-visual perception of compressed speech by profoundly hearing-impaired subjects. Audiology 36:165–177.

    Article  CAS  PubMed  Google Scholar 

  • Fabry D, Leek M, Walden B, Cord M (1993) Do adaptive frequency response (AFR) hearing aids reduce“upward spread”of masking? J Rehabil Res Dev 30:318–325.

    CAS  PubMed  Google Scholar 

  • Florentine M, Buus S, Scharf B, Zwicker E (1980) Frequency selectivity in normally hearing and hearing-impaired observers. Audiology 36:165–177.

    Google Scholar 

  • Gordon-Salant S (1986) Recognition of natural and time/intensity altered CVs by young and elderly hearing-impaired subjects. J Acoust Soc Am 80:1599–1607.

    Article  CAS  PubMed  Google Scholar 

  • Gordon-Salant S (1987) Effects of acoustic modification on consonant recognition by elderly hearing-impaired subjects. J Acoust Soc Am 81:1199–1202.

    Article  CAS  PubMed  Google Scholar 

  • Hohmann V, Kollmeier B (1995) The effect of multichannel dynamic compression on speech intelligibility. J Acoust Soc Am 97:1191–1195.

    Article  CAS  PubMed  Google Scholar 

  • Humes LE, Christense L, Thomas T, Bess FH, Hedley-Williams A, Bentler R (1999) A comparison of the aided performance and benefit provided by a linear and a two-channel wide dynamic range compression hearing aid. J Speech Lang Hear Res 42:65–79

    CAS  PubMed  Google Scholar 

  • Kennedy E, Levitt H, Neuman AC (1998) Consonant-vowel intensity ratios for maximizing consonant recognition by hearing-impaired listeners. J Acoust Soc Am 103:1098–1114.

    Article  CAS  PubMed  Google Scholar 

  • Kiessling J, Steffens T (1991) Clinical evaluation of a programmable three-channel automatic gain control amplification system. Audiology 30:70–81.

    CAS  PubMed  Google Scholar 

  • Killion MC (1993) The K-Amp hearing aid: an attempt to present high fidelity for the hearing impaired. Am J Audiol 2:52–74.

    Google Scholar 

  • Killion MC, Staab WJ, Preves DA (1990) Classifying automatic signal processors. Hear Instrum 41:24–26.

    Google Scholar 

  • Killion MC, Teder H, Johnson A, Hanke S (1992) Variable recovery time circuit for use with wide dynamic range automatic gain control for hearing aids. US Patent No. 5,144,675 (1 September 1992).

    Google Scholar 

  • Larsen VD, Williams DW, Henderson WG, Luethke LE, Beck LB, Noffsinger D, Wilson RH, Dobie RA, Haskell GB, Bratt GW, Shanks JE, Stelmachowicz P, Studebaker GA, Boysen AE, Donahue A, Canalis R, Fausti SA, Rappaport BZ (2000) Efficacy of 3 commonly used hearing aid circuits: a crossover trial. NIDCD/VA Clinical Trial Group. JAMA 284:1806–1813.

    Article  Google Scholar 

  • Laurence RF, Moore BCJ, Glasberg BR (1983) A comparison of behind-the-ear high fidelity linear hearing aids and two-channel compression aids, in the laboratory and in everyday life. Br J Audiol 17:31–48.

    CAS  PubMed  Google Scholar 

  • Levitt H (1982) An array-processor computer hearing aid. ASHA J Am Speech Hear Assoc 24:805.

    Google Scholar 

  • Levitt H (1993) Digital hearing aids. In: Studebaker GA, Hochberg I (eds) Acoustical Factors Affecting Hearing Aid Performance (2nd ed). Boston: Allyn and Bacon, pp. 317–335.

    Google Scholar 

  • Levitt H, Neuman AC (1991) Evaluation of orthogonal polynomial compression. J Acoust Soc Am 90:241–252.

    Article  CAS  PubMed  Google Scholar 

  • Levitt H, Neuman AC, Mills, Schwander T (1986) A digital master hearing aid. J Rehabil Res Dev 23:79–87.

    CAS  PubMed  Google Scholar 

  • Lindholm J, Dorman M, Taylor B, Hannley M (1988) Stimulus factors influencing the identification of voiced stop consonants by normal-hearing and hearing-impaired adults. J Acoust Soc Am 83:1608–1614.

    Article  CAS  PubMed  Google Scholar 

  • Lippmann R, Braida L, Durlach N (1981) Study of multichannel amplitude compression and linear amplification for persons with sensorineural hearing loss. J Acoust Soc Am 69:524–534.

    Article  CAS  PubMed  Google Scholar 

  • Medical Research Council (1947) Hearing Aids and Audiometers. Report of the Committee on Electro-Acoustics. Special Report Series No. 261. London: His Majesties Stationary Office.

    Google Scholar 

  • Montgomery A, Edge R (1988) Evaluation of two speech enhancement techniques to improve intelligibility for hearing impaired adults. J Speech Hear Res 31: 386–393.

    CAS  PubMed  Google Scholar 

  • Moore BCJ (1987) design and evaluation of a two-channel compression hearing aid. J Rehabil Res Dev 24:181–192.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR (1986) A comparison of two-channel and single-channel compression hearing aids. Audiology 25:210–226.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR (1988) A comparison of four methods of implementing automatic gain control (AGC) in hearing aids. Br J Audiol 22:93–104.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Laurence RF, Wright D (1985) Improvements in speech intelligibility in quiet and in noise produced by two-channel compression hearing aids. Br J Audiol 19:175–189.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR, Stone MA (1991) Optimization of a slow-acting automatic gain control system for use in hearing aids. Br J Audiol 25:171–182.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Johnson J, Clark T, Pluvinage V (1992) Evaluation of a dual-channel full dynamic range compression system for people with sensorineural hearing loss. Ear Hear 13:349–370.

    CAS  PubMed  Google Scholar 

  • Neely ST, Allen JB (1997) Relation between the rate of growth of loudness and the intensity DL. In: Jesteadt W (ed) Modeling Sensorineural Hearing Loss. Hillsdale, NJ: Erlbaum Associates, pp 213–222.

    Google Scholar 

  • Neuman AC, Bakke MH, Helman S, Levitt H (1994) Effect of compression ratio in a slow-acting compression hearing aid: paired comparison judgments of quality. J Acoust Soc Am 96:1471–1478.

    Article  CAS  PubMed  Google Scholar 

  • Neuman AC, Bakke MH, Mackersie C, Hellman S, Levitt H (1998) The effect of compression ratio and release time on the categorical rating of sound quality. J Acoust Soc Am 103:2273–2281.

    Article  CAS  PubMed  Google Scholar 

  • Plomp R (1988) The negative effect of amplitude compression in multichannel hearing aids in light of the modulation-transfer function. J Acoust Soc Am 83: 2322–2327.

    Article  CAS  PubMed  Google Scholar 

  • Plomp R (1994) Noise, amplification, and compression: considerations of three main issues in hearing aid design. Ear Hear 15:2–12.

    Article  CAS  PubMed  Google Scholar 

  • Robinson CE, Huntington DA (1973) The intelligibility of speech processed by delayed long-term averaged compression amplification. J Acoust Soc Am 54: 314.

    Article  Google Scholar 

  • Shorter DEL, Manson WI, Stebbings DW (1967) The dynamic characteristics of limiters for sound programme circuits. BBC Engineering Monograph No. 70. London: British Broadcasting Corporation.

    Google Scholar 

  • Souza PE, Turner CW (1996) Effect of single-channel compression of temporal speech information. J Speech Lang Hear Res 39:901–911.

    CAS  Google Scholar 

  • Souza PE, Turner CW (1998) Multichannel compression, temporal cues, and audibility. J Speech Lang Hear Res 41:315–326.

    CAS  PubMed  Google Scholar 

  • Steeneken HJM, Houtgast T (1980) A physical method for measuring speech-transmission quality. J Acoust Soc Am 67:318–326.

    Article  CAS  PubMed  Google Scholar 

  • Stone MA, Moore BCJ (1992) Syllabic compression: effective compression ratios for signals modulated at different rates. Br J Audiol 26:351–361.

    CAS  PubMed  Google Scholar 

  • Stone MA, Moore BCJ (1999) Tolerable hearing aid delays. I. Estimation of limits imposed by the auditory path alone using simulated hearing losses. Ear Hear 20: 182–192.

    Article  CAS  PubMed  Google Scholar 

  • Stone MA, Moore BCJ, Alcantara JI, Glasberg BR (1999) Comparison of different forms of compression using wearable hearing aids. J Acoust Soc Am 106: 3603–3619.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JA, Levitt H, Hwang JY, Hennessey AM (1988) An experimental comparison of four hearing aid prescription methods. Ear Hear 9:22–32.

    Article  CAS  PubMed  Google Scholar 

  • Teder H (1991) Hearing instruments in noise and the syllabic speech-to-noise ratio. Hear Instrum 42:15–18.

    Google Scholar 

  • Tyler RS, Kuk FK (1989) The effects of “noise suppression” hearing aids on consonant recognition in speech-babble and low-frequency noise. Ear Hear 10:243–249.

    Article  CAS  PubMed  Google Scholar 

  • Van Tasell DJ, Trine TD (1996) Effects of single-band syllabic amplitude compression on temporal speech information in nonsense syllables and in sentences. J Speech Lang Hear Res 39:912–922.

    Google Scholar 

  • Verschuure H, Prinsen T, Dreschler W (1994) The effects of syllabic compression and frequency shaping on speech intelligibility in hearing impaired people. Ear Hear 15:13–21.

    Article  CAS  PubMed  Google Scholar 

  • Verschuure H, Maas AJ, Stikvoort E, de Jong RM, Goedegebure A, Dreschler WA (1996) Compression and its effect on the speech signal. Ear Hear 17:162–175.

    CAS  PubMed  Google Scholar 

  • Villchur E (1973) Signal processing to improve speech intelligibility in perceptive deafness. J Acoust Soc Am 53:1646–1657.

    Article  CAS  PubMed  Google Scholar 

  • Villchur E (1989) Comments on “The negative effect of amplitude compression in multichannel hearing aids in light of the modulation-transfer function” [J Acoust Soc Am 83:2322–2327]. J Acoust Soc Am 86:425–427.

    Article  Google Scholar 

  • Walker G, Byrne D, Dillon H (1984) The effects of multichannel compression/expansion amplification on the intelligibility of nonsense syllables in noise. J Acoust Soc Am 76:746–757.

    Article  CAS  PubMed  Google Scholar 

  • Yanick P (1973) Improvements in speech discrimination with compression versus linear amplification. J Aud Res 13:333–338.

    Google Scholar 

  • Yund EW, Buckles KM (1995a) Enhanced speech perception at low signal-to-noise ratios with multichannel compression hearing aids. J Acoust Soc Am 97:1224–1240.

    Article  CAS  PubMed  Google Scholar 

  • Yund EW, Buckles KM (1995b) Multichannel compression hearing aids: effect of number of channels on speech discrimination in noise. J Acoust Soc Am 97:1206–1223.

    Article  CAS  PubMed  Google Scholar 

  • Yund EW, Buckles KM (1995c) Discrimination of multichannel-compressed speech in noise: long-term learning in hearing-impaired subjects. Ear Hear 16:417–427.

    Article  CAS  PubMed  Google Scholar 

  • Yund E, Simon HJ, Efron R (1987) Speech discrimination with an 8-channel compression hearing aid and conventional aids in background of speech-band noise. J Rehabil Res Dev 24:161–180.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Levitt, H. (2004). Compression Amplification. In: Bacon, S.P., Fay, R.R., Popper, A.N. (eds) Compression: From Cochlea to Cochlear Implants. Springer Handbook of Auditory Research, vol 17. Springer, New York, NY. https://doi.org/10.1007/0-387-21530-1_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-21530-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00496-9

  • Online ISBN: 978-0-387-21530-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics