Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 4))

  • 690 Accesses

Summary

Photosynthesis, an ancient process, originated among the earliest forms of life. Its broad distribution through at least half of the eubacterial phyla is an indication of this antiquity and, as stated by Woese (1987), the complexity of this process deems it unlikely that such a process arose on multiple occasions. This chapter summarizes and compares the structure of reaction centers of oxygenic photosynthetic organisms, purple bacteria, green bacteria and heliobacteria. Though there are two different types of contemporary photochemical reaction centers, recent comparative studies of structure and function revealed remarkable similarities that led to speculation of a common ancestor. A feature common to reaction centers is their association with a pigment bed that serves as a light-harvesting antenna. Evolutionary relationships of peripheral light-harvesting antenna complexes in chloroplasts also suggest a monophyletic origin of the organelle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987a) Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors. Proc Natl Acad Sci USA 84: 5730–5734

    PubMed  CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987b) Structure of the reaction center from Rhodobacter sphaeroides R-26: The protein subunits. Proc Natl Acad Sci USA 84: 6162–6166

    PubMed  CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26: Protein-cofactor (quinones and Fe21) interactions. Proc Natl Acad Sci USA 85: 8487–8491

    PubMed  CAS  Google Scholar 

  • Alt J, Morris J, Westhoff P and Herrmann RG (1984) Nucleotide sequence of the clustered genes for the 44 kd chlorophyll a apoprotein and the ‘32 kd’-like protein of the photosystem II reaction center in the spinach plastid chromosome. Curr Genet 8: 597–606

    CAS  Google Scholar 

  • Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochem Biophys Acta 593: 427–440

    PubMed  CAS  Google Scholar 

  • Awramik SM (1992) The oldest records of photosynthesis. Photosynth Res 33: 75–89

    Article  PubMed  CAS  Google Scholar 

  • Biggins J and Bruce D (1989) Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth Res 20: 1–34

    Article  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33: 91–111

    Article  PubMed  CAS  Google Scholar 

  • Brown AE, Gilbert CW, Guy R and Arntzen CJ (1984) Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 81: 6310–6314

    CAS  PubMed  Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975: 189–221

    PubMed  CAS  Google Scholar 

  • Brune DC (1995) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 847–870. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bullerjahn GS, Jensen TC, Sherman DM and Sherman LA (1990) Immunological characterization of the Prochlorothrix hollandica and Prochloron sp. chlorophyll a/b antenna proteins. FEMS Microbiol Lett 67: 99–105

    Article  CAS  Google Scholar 

  • Buttner M, Xie D-L, Nelson H, Pinther W, Hauska G and Nelson N (1992a) Photosynthetic reaction center genes in green sulfur bacteria and in photosystem I are related. Proc Natl Acad Sci USA 89: 8135–8139

    PubMed  CAS  Google Scholar 

  • Buttner M, Xie D-L, Nelson H, Pinther W, Hauska G and Nelson N (1992b) The photosystem I-like P840-reaction center of green S-bacteria is a homodimer. Biochim Biophys Acta 1101: 154–156

    PubMed  CAS  Google Scholar 

  • Cantrell A and Bryant DA (1987) Molecular cloning and nucleotide sequence of the psaA and psaB genes of the cyanobacterium Synechococcus PCC 7002. Plant Mol Biol 9: 453–468

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (1982) The origin of plastids. Biol J Linn Soc 17: 289–306

    Google Scholar 

  • Chereskin BM, Clement-Metral JD and Gantt E (1985) Characterization of a purified photosystem II-phycobilisome particle preparation from Porphyridium cruentum. Plant Physiol 77: 626–629

    Article  CAS  PubMed  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB and Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic ephotic zone. Nature 334: 340–343

    Article  Google Scholar 

  • Coleman WJ and You van DC (1993) Atavistic reaction centre. Nature 366: 517–518

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J and Michel H (1989) The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. EMBO J 8: 2149–2170

    PubMed  CAS  Google Scholar 

  • Deisenhofer J and Michel H (1991) High-resolution structure of photosynthetic reaction centers. Annu Rev Biophys Chem 20: 247–266

    Article  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318: 618–624

    Article  Google Scholar 

  • de Vitry C and Diner BA (1984) Photoaffinity labeling of the azidoatrazine receptor site in reaction centers of Rhodopseudomonas sphaeroides. FEBS Lett 167: 327–331

    Article  Google Scholar 

  • Fish LE, Kück U and Bogorad L (1985) Two partially homologous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a-protein complex of photosystem I. J Biol Chem 260: 1413–1421

    PubMed  CAS  Google Scholar 

  • Fotinou C, Kokkinidis M, Fritzsch G, Haase W, Michel H and Ghanotakis DF (1993) Characterization of a photosystem II core and its three-dimensional crystals. Photosynth Res 37: 41–48

    Article  CAS  Google Scholar 

  • Gantt E (1986) Phycobilisomes In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology: Photosynthesis III, Vol 19, pp 260–268. Springer-Verlag, Berlin

    Google Scholar 

  • Glazer AN and Melis A (1987) Photochemical reaction centers: Structure, organization and function. Annu Rev Plant Physiol 38: 11–45

    CAS  Google Scholar 

  • Golbeck JH (1992) Structure and function of photosystem I. Annu Rev Plant Physiol Plant Mol Biol 43: 293–324

    Article  CAS  Google Scholar 

  • Golbeck JH (1993) Shared thematic elements in photochemical reaction centers. Proc Natl Acad Sci USA 90: 1642–1646

    PubMed  CAS  Google Scholar 

  • Golbeck and Bryant (1991) Photosystem I. Curr Topics Bioenerg 16: 83–177

    CAS  Google Scholar 

  • Green BR, Pichersky E and Kloppstech K (1991) Chlorophyll a/b-binding proteins: An extended family. Trends Biochem Sci 16: 181–186

    Article  PubMed  CAS  Google Scholar 

  • Hawthornthwaite AM and Cogdell RJ (1991) Bacteriochlorophyll-binding proteins. In: Scheer H (ed) Chlorophylls, pp 493–528. CRC Press, Boca Raton

    Google Scholar 

  • Hearst JE and Sauer K (1984) Protein sequence homologies between portions of the L and M subunits of reaction centers of Rhodopseudomonas capsulata and the QB-protein of chloroplast thylakoid membranes: A proposed relation to quinone-binding sites. Z Naturforsch 39c: 421–424

    CAS  Google Scholar 

  • Hiller RG and Larkum AWD (1985) The chlorophyll-protein complexes of Prochloron sp. (Prochlorophyta). Biochim Biophys Acta 806: 107–115

    CAS  Google Scholar 

  • Holzenburg A, Bewley MC, Wilson FH, Nicholson WV and Ford RC (1993) Three-dimensional structure of photosystem II. Nature 363: 470–472

    Article  CAS  Google Scholar 

  • Kim S, Sandusky P, Bowlby NR, Aebersold R, Green BR, Vlahkis S, Yocum CF and Pichersky E (1992) Characterization of a spinach psbS cDNA encoding the 22 kDa protein of photosystem II. FEBS Lett 314: 67–71

    PubMed  CAS  Google Scholar 

  • Krauss N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT and Saenger W (1993) Three-dimensional structure of system I of photosynthesis at 6Å. Nature 361: 326–330

    Article  CAS  Google Scholar 

  • Kück U, Choquet Y, Schneider M, Dron M and Bennoun P (1987) Structural and transcription analysis of two homologous genes for the P700 chlorophyll a-apoproteins in Chlamydomonas reinhardtti: Evidence for in vivo trans-splicing. EMBO J 6: 2185–2195

    PubMed  Google Scholar 

  • Kühlbrandt W and Wang DN (1991) Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature 350: 130–134

    PubMed  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    PubMed  Google Scholar 

  • Lewin RA (1975) Extraordinary pigment composition of a prokaryotic alga. Nature 256: 735–737

    Article  CAS  Google Scholar 

  • Lewin RA (1976) Prochlorophyta as a proposed new division of algae. Nature 261: 697–698

    Article  PubMed  CAS  Google Scholar 

  • Liebl U, Mockensturm-Wilson M, Trost JT, Brune DC, Blankenship RE and Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis: Structural implications and relations to other photosystems. Proc Natl Acad Sci USA 90: 7124–7128

    PubMed  CAS  Google Scholar 

  • Lockau W and Nitschke W (1993) Photosystem I and its bacterial counterparts. Physiol Plant 88: 372–381

    Article  CAS  Google Scholar 

  • Margulies MM (1991) Sequence similarity between photosystem I and II. Identification of a photosystem I reaction center transmembrane helix that is similar to transmembrane helix IV of the D2 subunit of photosystem II and the M subunit of the non-sulfur purple and flexible green bacteria. Photosynth Res 29:133–147

    CAS  Google Scholar 

  • Mathis P (1990) Compared structure of plant and bacterial photosynthetic reaction centers. Evolutionary implications. Biochim Biophys Acta 1018: 163–167

    CAS  Google Scholar 

  • Michel H, Weyer KA, Gruenberg H, Dunger I, Oesterhelt D and Lottspeich F (1986) The ‘light’ and ‘medium’ subunits of the photosynthetic reaction centre from Rhodopseudomonas viridis: Isolation of the genes, nucleotide and amino acid sequence. EMBO J 5: 1149–1158

    PubMed  CAS  Google Scholar 

  • Miller KR and Lyon MK (1985) Do we really know why chloroplast membranes stack? Trends Biochem Sci 10: 219–222

    CAS  Google Scholar 

  • Nilsson F, Andersson B, and Jansson C (1990) Photosystem II characteristics of a constructed Synechocystis 6803 mutant lacking synthesis of the D1 polypeptide. Plant Molec Biol 14: 1051–1054

    CAS  Google Scholar 

  • Nitschke W and Rutherford AW (1991) Photosynthetic reaction centres: Variations on a common theme? Trends Biochem Sci 16:241–245

    Article  PubMed  CAS  Google Scholar 

  • Nitschke W, Feiler U and Rutherford AW (1990a) Photosynthetic reaction center of green sulfur bacteria studied by EPR. Biochemistry 29: 3834–3842

    PubMed  CAS  Google Scholar 

  • Nitschke W, Setif P, Liebl U, Feiler U and Rutherford AW (1990b) Reaction center photochemistry of Heliobacterium chlorum. Biochemistry 29: 11079–11088

    PubMed  CAS  Google Scholar 

  • Olson JM and Pierson BK (1987a) Origin and evolution of photosynthetic reaction centers. Origins of Life 17: 419–430

    CAS  Google Scholar 

  • Olson JM and Pierson BK (1987b) Evolution of reaction centers in photosynthetic prokaryotes. Int Rev Cytol 108: 209–248

    PubMed  CAS  Google Scholar 

  • Peat CJ, Muir MD, Plumb KA, McKirdy DM and Norvick MS (1978) Proterozoic micro fossils from the Roper Group, Northern Territory, Australia. J Austr Geol Geophys 3: 1–17

    Google Scholar 

  • Pfister K, Steinback KE, Gardner G and Arntzen CJ (1981) Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc Natl Acad Sci USA 78: 981–985

    CAS  PubMed  Google Scholar 

  • Pierson BK and Olson JM (1989) Evolution of photosynthesis in anoxygenic photosynthetic prokaryotes. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 402–427 Am Soc Microbiol, Washington

    Google Scholar 

  • Raven PH (1970) A multiple origin for plastids and mitochondria. Science 169: 36–40

    Google Scholar 

  • Renger G (1993) Water cleavage by solar radiation–an inspiring challenge of photosynthesis research. Photosynth Res 38: 229–247

    Article  CAS  Google Scholar 

  • Rochaix J-D, Dron M, Rahire M and Malone P (1984) Sequence homology between the 32 kdalton and the D2 chloroplast membrane polypeptides of Chlamydomonas reinhardii. Plant Molec Biol 3: 363–370

    CAS  Google Scholar 

  • Rutherford AW (1989) Photosystem II, the water-splitting enzyme. Trends Biochem Sci 14: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Thornber JP, Morishige DT, Anandan S and Peter GF (1991) Chlorophyll-carotenoid proteins of higher plant thylakoids. In: Scheer H (ed) Chlorophylls, pp 549–585. CRC Press, Boca Raton

    Google Scholar 

  • Trissl H-W and Wilhelm C (1993) Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem Sci 18: 415–419

    Article  PubMed  CAS  Google Scholar 

  • Trost JT, Brune DC and Blankenship RE (1992) Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I. Photosynth Res 32: 11–22

    Article  PubMed  CAS  Google Scholar 

  • Vermaas WFJ (1994) Evolution of heliobacteria: Implications for photosynthetic reaction center complexes. Photosynth Res 41:285–294

    Article  PubMed  CAS  Google Scholar 

  • Williams JC, Steiner LA, Ogden RC, Simon MI and Feher G (1983) Primary structure of the M subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 80: 6505–6509

    CAS  PubMed  Google Scholar 

  • Williams JC, Steiner LA, Feher G and Simon MI (1984) Primary structure of the L subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 81: 7303–7307

    PubMed  CAS  Google Scholar 

  • Williams JC, Steiner LA and Feher G (1986) Primary structure of the reaction center from Rhodopseudomonas sphaeroides, Proteins: Structure Function Genetics 1: 312–325

    CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  CAS  Google Scholar 

  • Wolfe GR, Cunningham FX and Gantt E (1992) In the red alga Porphyridium cruentum photosystem I is associated with a putative LHCI complex. In: Murata N (ed) Research in Photosynthesis, pp 315–318. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Wolfe GR, Cunningham FX, Durnford D, Green BR and Gantt E (1994a) Evidence for a common origin of chloroplasts with differently pigmented light-harvesting complexes. Nature 367: 566–568

    Article  CAS  Google Scholar 

  • Wolfe GR, Cunningham FX, Grabowski B, Gantt E (1994b) Isolation and characterization of Photosystem I and II from the red alga Porphyridium cruentum. Biochim Biophys Acta 1188: 357–366

    Google Scholar 

  • Youvan DC, Bylina EJ, Alberti M, Begusch H and Hearst JE (1984) Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata. Cell 37: 949–957

    Article  PubMed  CAS  Google Scholar 

  • Zuber H (1985) Structure and function of light-harvesting complexes and their polypeptides. Photochem Photobiol 42: 821–844

    CAS  Google Scholar 

  • Zurawski G, Bohnert H, Whitfeld PR and Bottomley W (1982) Nucleotide sequence of the gene for the Mr 32,000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of Mr 38,950. Proc Natl Acad Sci USA 79: 7699–7703

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wolfe, G.R., Hoober, J.K. (1996). Evolution of Thylakoid Structure. In: Ort, D.R., Yocum, C.F., Heichel, I.F. (eds) Oxygenic Photosynthesis: The Light Reactions. Advances in Photosynthesis and Respiration, vol 4. Springer, Dordrecht. https://doi.org/10.1007/0-306-48127-8_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-48127-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3683-9

  • Online ISBN: 978-0-306-48127-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics