Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 3))

Summary

The efficiency of photosynthetic light energy conversion depends largely on the molecular architecture of the photosynthetic membranes. Linear and cicular dichroism (LD and CD) techniques have contributed significantly to our knowledge of the molecular organization of the pigment system in various complexes and membranes. Systematic LD studies have led to the recognition of an apparently universal property of pigment systems in vivo: all pigments in all photosynthetic organisms display non-random orientation with respect to each other, to the protein axes and to the membrane plane. This molecular organization plays an important role in the energy transfer between pigment molecules. CD spectroscopy is widely used for the detection of excitonic interactions, which have been found to occur in virtually all reaction center and antenna complexes. Excitonic CD carries information on the distances and orientation of the interacting pigment molecules. CD is also capable of revealing information about certain macro-organizational parameters in molecular aggregates with sizes commensurate with the wavelength of visible light. These non-invasive techniques can be used for systems in a wide range of structural complexity, from isolated pigment molecules to whole organelles. CD and LD techniques have been extended to the (sub)picosecond time range. Combined with the methods of quantitative evaluation of data, these techniques will certainly remain indispensable in elucidation of the structure and function of the photophysical and photochemic alapparatus.

The purpose of this chapter is to provide an introduction to the theory and practice of LD and CD methods in photosynthesis. The main emphasis will be placed on the underlying principles and the basics of the experimental procedures, complemented with a few illustrations of results. I would also like to draw attention to a few recently introduced polarization techniques which are ripe for application in photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdourakhmanov I and Erokhin YE (1980) Linear dichroism of pigments associated with spherical chromatophores. Model of orientation in polyacrylamide gels. Mol Biol (USSR) 14: 539–548. (Russian edition).

    Google Scholar 

  • Abdourakhmanov I, Ganago AO, Erokhin YuE, Solov’ev A and Chugunov V (1979) Orientation and linear dichroism of the reaction centers from Rhodopseudomonas sphaeroides R-26. Biochim Biophys Acta 546: 183–186.

    PubMed  CAS  Google Scholar 

  • Ade H and Hsiao B (1993) X-ray linear dichroism microscopy. Science 262: 1427–1429.

    CAS  PubMed  Google Scholar 

  • Barron LD (1982) Molecular Light Scattering and Optical Activity. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Barzda V, Mustárdy L and Garab G (1994) Size dependency of circular dichroism in macroaggregates of photosynthetic pigment-protein complexes. Biochemistry 33: 10837–10841.

    Article  PubMed  CAS  Google Scholar 

  • Bassi R, Machold O and Simpson D (1985) Chlorophyll-proteins of two photosystem I preparations from maize. Carlsberg Res Commun 50: 145–162.

    CAS  Google Scholar 

  • Bauman D and Wrobel D (1980) Dichroism andpolarized fluorescence of chlorophyll a, chlorophyll c, and bacteriochlorophyll a dissolved in liquid crystals. Biophys Chem 12: 83–91.

    Article  CAS  PubMed  Google Scholar 

  • Björling SC, Goldbeck RA, Milder SJ, Randall CE, Lewis JW and Kliger DS (1991) Analysis of optical artifacts in ellipsometric measurements of time-resolved circular dichroism. J Chem Phys 95: 4685–4694.

    Google Scholar 

  • Bloemendal M and Van Grondelle R (1993) Linear-dichroism spectroscopy for the study of structural properties of proteins. Mol Biol Reports 18: 49–69.

    CAS  Google Scholar 

  • Bloemendal M, Leunissen JAM, Van Amerongen H and Van Grondelle R (1990) Average orientation of aromatic residues in proteins determined from linear dichroism spectroscopy. A comparison of results on bovine +-crystallins with X-ray data. J Mol Biol 216: 181–186.

    PubMed  CAS  Google Scholar 

  • Böddi B and Láng F (1984) Molecular structure of protochlorophyll forms. In: Sironval C and Brouers M (eds) Protochlorophyllide Reduction and Greening, pp 341–349. Martinus Nijhoff/Dr W Junk Publ, The Hague.

    Google Scholar 

  • Böddi B and Shioi Y (1990) Spectroscopic forms of oleinyl protochlorophyllide in solid films. Biochim Biophys Acta 1015: 116–120.

    Google Scholar 

  • Born M, Wolf E (1980) Principles of Optics. 6th edn. Pergamon Press, Oxford.

    Google Scholar 

  • Braun P, Greenberg BM and Scherz A (1990) D1-D2-cytochrome b559 complex from the aquatic plant Spirodela oligorrhiza: Correlation between complex integrity, spectroscopic properties, photochemical activity, and pigment composition. Biochemistry 29: 10376–10387.

    Article  PubMed  CAS  Google Scholar 

  • Breton J (1986) Molecular orientation of the pigments and the problem of energy trapping in photosynthesis In: Staehelin A and Arntzen (eds) Encyclopedia of Plant Physiology, pp 319–326. Springer-Verlag, Berlin.

    Google Scholar 

  • Breton J and Ikegami I (1989) Orientation of photosystem I pigments: low temperature linear dichroism spectroscopy of a highly-enriched P700 particle isolated from spinach. Photosynth Res 21: 27–36.

    CAS  Google Scholar 

  • Breton J and Nabedryk E (1987) Pigment and protein organization in reaction center and antenna complexes. In: Barber J (ed) The Light Reactions, pp 159–195, Elsevier, Amsterdam.

    Google Scholar 

  • Breton J and Verméglio A (1982) Orientation of photosynthetic pigments in vivo. In: Govindjee (ed) Photosynthesis, pp 153–193. Academic Press, New York.

    Google Scholar 

  • Breton J, Michel-Villaz M, Paillotin G and Vandevyver M (1972) Application oflinear dichroism to the study of the distribution of pigments in monomolecular layers. Thin Solid Films 13: 351–357.

    Article  CAS  Google Scholar 

  • Breton J, Becker JF and Geacintov N (1973a) Fluorescence depolarization study of randomly oriented and magneto-oriented spinach chloroplasts in suspension. Biochem Biophys Res Comm 54: 1403–1409.

    Article  PubMed  CAS  Google Scholar 

  • Breton J, Michel-Villaz M and Paillotin G (1973b) Orientation of pigments and structural proteins in the photosynthetic membrane of spinach chloroplasts: A linear dichroism study. Biochim Biophys Acta 314: 42–56.

    PubMed  CAS  Google Scholar 

  • Bustamante C and Maestre MF (1988) Statistical effects in the absorption and optical activity of particulate suspension. Proc Natl Acad Sci USA 85: 8482–8486.

    PubMed  CAS  Google Scholar 

  • Bustamante C, Maestre MF and Keller D (1985) Expressions for the interpretation of circular intensity differential scattering of chiral aggregates. Biopolymers 24 (8): 1595–1612.

    Article  PubMed  CAS  Google Scholar 

  • Cantor CR and Schimmel PR (1980) Biophysical Chemistry Part II: Techniques for the Study of Biological Structure and Function. W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Charney E (1979) The Molecular Basis of OpticalActivity. John Wiley and Sons, New York.

    Google Scholar 

  • Charney E (1988) Electric linear dichroism and birefringence of biological polyelectrolytes. Q Rev Biophys 21: 1–60.

    PubMed  CAS  Google Scholar 

  • Clayton RK (1980) Photosynthesis. Physical Mechanisms and Chemical Patterns. Cambridge University Press, Cambridge.

    Google Scholar 

  • Cogdell RJ and Scheer H (1985) Circular dichroism of light-harvesting complexes from purple photosynthetic bacteria. Photochem Photobiol 42: 669–678.

    CAS  Google Scholar 

  • Davidsson A, Nordén B and Seth S (1980) Measurement of oriented circular dichroism. Chem PhysLett 70: 313–316.

    CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398.

    Article  PubMed  CAS  Google Scholar 

  • DeVoe H (1965) Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals. J Chem Phys 43: 3199–3208.

    Google Scholar 

  • Dratz EA, Schultz AJ and Sauer K (1966) Chlorophyll-chlorophyll interactions. Brookhaven Symp Biol 19: 303–318.

    PubMed  CAS  Google Scholar 

  • Duysens LNM (1956) The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim Biophys Acta 19: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Fenna RE and Matthews BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258: 573–574.

    Article  CAS  Google Scholar 

  • Finzi L, Bustamante C, Garab G and Juang C-B (1989) Direct observation of large chiral domains in chloroplast thylakoid membranes by differential polarization microscopy. Proc Natl Acad Sci USA 86: 8748–8752.

    PubMed  CAS  Google Scholar 

  • Finzi L, Ulibarri L and Bustamante C (1991) Differential polarizarion imaging. V. Numerical aperture effects and the contribution of preferential scattering and absorption to the circular dichroism images. Biophys J 59: 1183–1193.

    PubMed  CAS  Google Scholar 

  • Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern Quantum Chemistry. Part III: Action of Light and Organic Crystals, pp 93–137. Academic Press, New York.

    Google Scholar 

  • Frąckowiak D Bauman D and Stillman MJ (1982) Circular dichroism and magnetic circular dichroism spectra of chlorophyll in nematic liquid crystals. Biochim Biophys Acta 681: 273–285.

    Google Scholar 

  • Frąckowiak D Hotchandani S, Leblanc RM, Szurkowski J (1984) Photoacoustic spectra of chlorophyll a andchlorophyll b in liquid crystal matrix. In: Sybesma C (ed) Advances in Photosynthesis Research, Vol I, pp 713–716. Martinus Nijhoff/Dr. W. Junk Publ., The Hague.

    Google Scholar 

  • Frąckowiak D Lorrain L, Wrobel D and Leblanc RM (1985) Polarized photoacoustic, absorption and fluorescence spectra of chloroplasts and thylakoids oriented in polyvinyl alcohol films. Biochem Biophys Res Comm 126: 254–261.

    PubMed  Google Scholar 

  • Frąckowiak D Bauman D, Manikowski H, Browett WR and Stillman MJ (1987) Circular dichroism and magnetic circular dichroism spectra of chlorophylls a and b in nematic liquid crystals. II. Magnetic circular dichroism spectra. Biophys Chem 28: 101–114.

    PubMed  Google Scholar 

  • Frąckowiak D Cegielski R and Leblanc RM (1990) Thermal deactivation of excitation of Rhodospirillum rubrum cells and their fragments immobilized on polymer films. Photosynthetica 24: 85–95.

    Google Scholar 

  • Frąckowiak D Wrobel D and Dudkowiak A (1991) Application of the polarized light photoacoustic in photosynthesis research. Trends Photochem Photobiol 2: 411–420.

    Google Scholar 

  • Fragata M (1991) Resolved Ox and Qy electronic transitions in chlorophyll a. In: Douglas RH, Moan J and Rontó G (eds) Light in Biology and Medicine, Vol 2, pp 393–399. Plenum Press, New York.

    Google Scholar 

  • Fragata M, Nordén B and Kurucsev (1988) Linear dichroism (250–700 nm) of chlorophyll a and pheophytin a oriented in a lamellar phase of glycerylmonooctanoate/H2O Characterization of electronic transitions. Photochem Photobiol 47: 133.

    CAS  Google Scholar 

  • Francke C, Otte SCM, Vander Heiden JC and Amesz J (1994) Spurious circular dichroism signals with intact cells of heliobacteria. Biochim Biophys Acta 1186: 75–80.

    CAS  Google Scholar 

  • Frank HA, Cogdell RJ (1993) Photochemistry and function of carotenoids in photosynthesis. In: Young A and Britton G (eds) Carotenoids in Photosynthesis, pp 253–326. Chapman and Hall, London.

    Google Scholar 

  • Frank HA, Violette CA, Taremi SS and Budil DE (1989) Linear dichroism of singlecrystal of the reaction centre from Rhodobacter sphaeroides wild type strain 2.4.1. Photosynth Res 21: 107–116.

    CAS  Google Scholar 

  • Gadella T, Jovin T and Clegg R (1993) Fluorescence life time imaging microscopy (FLIM): spatial resolution of micros-tructures on the nanosecond time scale. Biophys Chem 48: 221–239.

    Article  CAS  Google Scholar 

  • Gafni A, Hardt H, Schlessinger J and Steinberg IZ (1975) Circular polarization of fluorescence of chlorophyll in solution and in native structures. Biochim Biophys Acta 387: 256–264.

    PubMed  CAS  Google Scholar 

  • Gagliano A, Geacintov N and Breton J (1977) Orientation and linear dichroism of chloroplasts and sub-chloroplast fragments oriented in an electric field. Biochim Biophys Acta 461: 460–474.

    PubMed  CAS  Google Scholar 

  • Ganago AO and Fock M (1981) Direct and reverse problems n linear dichroism studies. Spectr Lett 14: 405–414.

    Article  CAS  Google Scholar 

  • Ganago IB, Klimov W, Ganago AO, Shuvalov VA and Erokhin YE (1982) Linear dichroism and orientation of pheophytin, the intermediary electron acceptor in photosystem II reaction centers. FEES Lett 140: 127–130.

    Article  CAS  Google Scholar 

  • Ganago AO, Garab G and Faludi-Dániel A (1983) Analysis of linearly polarized fluorescence of chloroplasts oriented in polyacrylamide gel. Biochim Biophys Acta 723: 287–293.

    CAS  Google Scholar 

  • Garab G and Breton J (1976) Polarized light spectroscopy on oriented spinach chloroplasts. Fluorescence emission at low temperature. Biochem Biophys Res Comm 71: 1095–1102.

    Article  PubMed  CAS  Google Scholar 

  • Garab G, Kiss JG, Mustárdy L and Michel-Villaz M (1981) Orientation of emitting dipoles of chlorophyll a in thylakoids. Consideration on the orientation factor in vivo. Biophys J 34: 423–437.

    PubMed  CAS  Google Scholar 

  • Garab G, Szitó T, Faludi-Dániel A (1987) Organization of pigments and pigment-protein complexes of thylakoids revealed by polarized light spectroscopy. In: Barber J (ed) The Light Reactions, pp 305–339. Elsevier, Amsterdam, New York, Oxford.

    Google Scholar 

  • Garab G, Faludi-Dániel A, Sutherl JC and Hind G (1988a) Macroorganization of chlorophyll a/b light-harvesting complex in thylakoids and aggregates: Information from circular differential scattering. Biochemistry 27: 2425–2430.

    CAS  Google Scholar 

  • Garab G, Leegood RC, Walker DA, Sutherl JC and Hind G (1988b) Reversible changes in macroorganization of the light-harvesting chlorophyll a/b pigment-protein complex detectedby circular dichroism. Biochemistry 27: 2430–2434.

    CAS  Google Scholar 

  • Garab G, Wells KS, Finzi L and Bustamante C (1988c) Helically organized macroaggregates of pigment-protein complexes in chloroplasts: Evidence from circular intensity differential scattering. Biochemistry 27: 5839–5843.

    PubMed  CAS  Google Scholar 

  • Garab G, Finzi L, Bustamante C (1991a) Differential polarization imaging of chloroplasts: Microscopic and macroscopic linear and circular dichroism. In: Douglas RH, Moan J and Rontó G (eds) Light in Biology and Medicine, pp 77–88. Plenum Press, New York, London.

    Google Scholar 

  • Garab G, Kieleczawa J, Sutherl JC, Bustamante C and Hind G (1991b) Organization of pigment-protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll b-less mutant of barley as revealed by circular dichroism. Photochem Photobiol 54: 273–281.

    CAS  Google Scholar 

  • Geacintov N, Van Nostrand F, Becker JF and Tinkel J (1972) Magnetic field induced orientation of photosynthetic systems. Biochim Biophys Acta 267: 65–79.

    PubMed  CAS  Google Scholar 

  • Gottstein J, Scherz A and Scheer H (1993) Bacteriochlorophyll aggregates in positively charged micelles. Biochim Biophys Acta 1183: 413–416.

    PubMed  CAS  Google Scholar 

  • Gregory RPF, Demeter S and Faludi-Dániel A (1980) Macro-molecular organization of chlorophyll a in aggregated chlorophyll a/b protein complex as shown by circular dichroism at room and cryogenic temperatures. Biochim Biophys Acta 591: 356–360.

    PubMed  CAS  Google Scholar 

  • Gülen D and Knox RS (1984) Absorption and circular dichroism of the chlorophyll-protein CPII: extensions of a trimeric exciton model. Photobiochem Photobiophys 7: 277–286.

    Google Scholar 

  • Haworth P, Arntzen CJ, Tapie P and Breton J (1982) Orientation of pigments in the thylakoid membrane and in the isolated chlorophyll-protein complexes of higher plants. I determination of optimal conditions for linear dichroism measurements. Biochim Biophys Acta 679: 428–435.

    CAS  Google Scholar 

  • Hemelrijk PW, Kwa SLS, Van Grondelle R and Dekker JP (1992) Spectroscopic properties of LHCII, the main light-harvesting chlorophyll a/b protein complex from chloroplast membranes. Biochim Biophys Acta 1098: 159–166.

    CAS  Google Scholar 

  • Hiller RG and Breton J (1992) A linear dichroism study of photosynthetic pigment organisation in two fucoxanthin-containing algae. Biochim Biophys Acta 1102: 365–370.

    CAS  Google Scholar 

  • Hoff A (1974) The orientation of chlorophyll and bacterio-chlorophyll molecules in an oriented lecitin multilayer. Photochem Photobiol 19: 51–57.

    CAS  Google Scholar 

  • Hoff A (1990) Triplet states in photosynthesis: linear dichroic optical difference spectra via magnetic resonance. In: Lin-skens HF and Jackson JF (eds) Physical Methods in Plant Sciences, pp 23–57. Springer-Verlag, Berlin.

    Google Scholar 

  • Hofrichter J and Eaton WA (1976) Linear dichroismof biological chromophores. Ann Rev Biophys Bioeng 5: 511–560.

    CAS  Google Scholar 

  • Hollósi M, Holly S, Majer Z, Kajtár J, Perzcel A and Fasman GD (1993) Analysis of the circular dichroism spectra of peptides guided by Fourier-transform infrared spectroscopy. 5th International Conference on Circular Dichroism, Book of Abstracts, pp 59–65.

    Google Scholar 

  • Homer-Dixon JA, Gantt E and Bruce D (1994) Pigment orientation changes accompanying the light state transition in Synechococcus sp. PCC 6301. Photosynth Res 40: 35–44.

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G and Young AJ (1991) Control of the light-harvesting function of chloroplasts membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett 292: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Houssier C and Sauer K (1970) Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments. J Am Chem Soc 92: 779–791.

    Article  CAS  Google Scholar 

  • Istokovics A, Lajkó F, Liker E, Barzda V, Simidjiev I, Garab G (1992) Inhibition of the ligh tinduced reversible structural rearrangements of the macrodomains and the phosphorylation of membranes by quinone antagonists. In: Murata N (ed) Research in Photosynthesis, Vol II, pp 631–634. Kluwer Academic Publishers, Dordrecht, Boston, London.

    Google Scholar 

  • Johansson L and Lindblom G (1980) Orientation and mobility of molecules in membranes studied by polarized light spectroscopy. Q Rev Biophys 13: 63–118.

    PubMed  CAS  Google Scholar 

  • Johnson WCJ (1985) Circular dichroism and its empirical application to biopolymers. Meth Biochem Anal 31: 61–163

    CAS  Google Scholar 

  • Johnson WCJ (1990) Protein secondary structure and circular dichroism: A practical guide. Proteins: Struct Funct Gen 7: 205–214.

    CAS  Google Scholar 

  • Juszcak L, Geacintov NE, Zilinkas BA and Breton J (1987) Linear dichroism and orientation of pigments in phycobilisomes and their subunits In: Scheer H and Schneider S (eds) Photosyn thetic Light-Harvesting Systems. Organization and Function, pp 281–292. Walter de Gruyter, Berlin.

    Google Scholar 

  • Keiderling TA, Pancoska P, Yasui SC, Urbanova M, Baumruk V, Gupta VP, Duko RK, Bour P and Huo D (1993) Application of vibrational circular dichroism to protein secondary strusture — empirical and theoretical comparisons. 5th International Conference on Circular Dichroism, Book of Abstracts, pp 73–77.

    Google Scholar 

  • Keller D and Bustamante C (1986a) Theory of the interaction of light with large inhomogeneous molecular aggregates. I. Absorption. J Chem Phys 84: 2961–2971.

    CAS  Google Scholar 

  • Keller D and Bustamante C (1986b) Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism. J Chem Phys 84: 2972–2979.

    CAS  Google Scholar 

  • Keller D, Bustamante C, Maestre MF and Tinoco IJ (1985) Imaging of optically active biological structures by use of circularly polarized light. Proc Natl Acad Sci USA 82: 401–405.

    PubMed  CAS  Google Scholar 

  • Kim M and Bustamante C (1991) Differential polarization imaging. IV. Images in higher Born approximations. Biophys J 59: 1171–1182.

    PubMed  CAS  Google Scholar 

  • Kim M, Ulibarri L, Keller D, Maestre MF and Bustamante C (1986) The psi-type circular dichroism of large molecular aggregates. III. Calculations. J Chem Phys 84: 2981–2989.

    CAS  Google Scholar 

  • Kim M, Keller D and Bustamante C (1987a) Differential polarization imaging. I. Theory. Biophys J 52: 911–927.

    CAS  Google Scholar 

  • Kim M, Ulibarri L and Bustamante C (1987b) Differential polarization imaging. II. Symmetry properties and calculations. Biophys J 52: 929–946.

    PubMed  CAS  Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985) Picosecond-photodichroism studies of the transient states in Rhodopseudomonas sphaeroides reaction centers at 5 K. Effects of electron transfer on the six bacteriochlorin pigments. Biochim Biophys Acta 810: 49–61.

    CAS  Google Scholar 

  • Kiss L, Ganago AO and Garab G (1985) Quantitative method for studying orientation of transition dipoles in membrane vesicles of spherical symmetry. J Biochem Biophys Meth 11: 213–225.

    PubMed  CAS  Google Scholar 

  • Kiss JG, Garab G, Tóth Z and Faludi-Dániel A (1986) The light-harvesting chlorophyll a/b protein acts as a torque aligning chloroplasts in a magnetic field, Photosynth Res 10: 217–222.

    Article  CAS  Google Scholar 

  • Knox RS and Davidovich MA (1978) Theory of fluorescence polarization inmagnetically oriented photosynthetic systems. Biophys J 24: 689–712.

    PubMed  CAS  Google Scholar 

  • Kramer H and Amesz J (1982) Anisotropy ofthe emission and absorption bands of spinach chloroplasts measured by fluorescence polarization and polarized excitation spectra at low temperature. Biochim Biophys Acta 682: 201–207.

    Google Scholar 

  • Kruk J, Strzalka K and Leblanc M (1993) Linear dichroism and molecular orientation in Langmuir-Blodgett films of plastoquinones and α-tocopherol quinone. Biochim Biophys Acta 1142: 6–10.

    PubMed  CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621.

    PubMed  Google Scholar 

  • Kwa SLS, Eijckelhoff C, Grondelle R and Dekker JP (1994) Site-selection spectroscopy of the reaction center complex of photosystem II. I. Triplet-minus-singlet absorption difference: a search for asecond exciton band of P-680. J Phys Chem 98: 7702–7711.

    CAS  Google Scholar 

  • Lehmann RP, Brunisholz RE and Zuber H (1994) Giant circular dichroism of chlorosomes from Chloroflexus aurantiacus treated with 1-hexanol and proteolytic enzymes. Photosynth Res 41: 165–173.

    Article  CAS  Google Scholar 

  • Lewis JW, Goldbeck RA and Kliger DS (1992) Time resolved circular dichroisms pectroscopy: Experiment, theory, and applications of biological systems. J Phys Chem 96: 5243–5254.

    CAS  Google Scholar 

  • Lu X and Pearlstein RM (1993) Simulations of Prosthecochloris bacteriochlorophyll a protein optical spectra improved by parametric computer search. Photochem Photobiol 57: 86–91.

    CAS  Google Scholar 

  • Matsuura K, Hirota M, Shimada K and Mimuro M (1993) Spectral forms and orientation of bacteriochlorophylls c and a in chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. Photochem Photobiol 57: 92–97.

    CAS  Google Scholar 

  • Matthews BW, Fenna RE, Bolognesi MC, Schmid MF and Olson JM (1979) Structure of a bacteriochlorophyll a protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol 131: 259–285.

    Article  PubMed  CAS  Google Scholar 

  • Matthijs HCP, Van der Staay GWM, Van Amerongen H, Van Grondelle R and Garab G (1989) Structural organisation of chlorophyll b in the prochlorophyte Prochlorothrix hollandica. Biochim Biophys Acta 975: 185–187.

    CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Law-less AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521.

    Article  CAS  Google Scholar 

  • Mimuro M, Katoh T and Kawai H (1990) Spatial arrangement of pigments and their interaction in the fucoxanthin-chlorophyll a/c protein assembly (FCPA) isolated from the brown alga Dictyota dichotoma. Analysis by means of polarized spectroscopy. Biochim Biophys Acta 1015: 450–456.

    CAS  Google Scholar 

  • Moog RS, Kuki A, Fayer MD and Boxer SG (1984) Excitation transport and trapping in a synthetic chlorophyllide substituted hemoglobin: Orientation of the chlorophyll S1 transition dipole. Biochemistry 23: 1564–1571.

    Article  PubMed  CAS  Google Scholar 

  • Nabedryk E, Andrianambinintsoa S and Breton J (1984) Transmembrane orientation of α-helices in the thylakoid membrane and in light-harvesting complex. A polarized infrared spectroscopy study. Biochim Biophys Acta 765: 380–387.

    CAS  Google Scholar 

  • Nordén B (1980) Simple formulas for dichroism analysis. Orientation of solutes in stretched polymer matrices. J Chem Phys 72: 5032–5036.

    Google Scholar 

  • Nordén B, Kubista M and Kurucsev T (1992) Linear dichroism spectroscopy of nucleic acids. Q Rev Biophys 25: 51–170.

    PubMed  Google Scholar 

  • Osváth S, Meszéna G, Barzda V and Garab G (1994) Trapping magnetically oriented chloroplasts thylakoid membranes in gels for electric measurements. J Photochem Photobiol 26: 287–292.

    Google Scholar 

  • Papp E and Meszéna G (1982) Field concentration and temperature dependence of fluorescence polarization of magnetically oriented chloroplasts. Biophys J 39: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Parson WW and Warshel A (1987) Spectroscopic properties of photosynthetic reaction centers II. Application of the theory to Rhodopseudomonas viridis. J Am Chem Soc 109: 6152–6163.

    Article  CAS  Google Scholar 

  • Paulsen H, Finkenzeller B and Kuhlein N (1993) Pigments induced folding of light-harvesting chlorophyll a/b-binding protein. Eur J Biochem 215: 809–816.

    Article  PubMed  CAS  Google Scholar 

  • Pearlstein RM (1982) Chlorophyll singlet excitons. In: Govindjee (ed) Photosynthesis, Vol. 1, pp 293–330. Academic Press, New York.

    Google Scholar 

  • Pearlstein RM (1987) Structure and exciton effects in photosynthesis. In: Amesz J (ed) Photosynthesis, pp 299–317. Elsevier, Amsterdam.

    Google Scholar 

  • Pearlstein RM (1991) Theoretical interpretation of antenna spectra. In: Scheer H (ed) Chlorophylls, pp 1047–1078. CRC Press, Boca Raton.

    Google Scholar 

  • Pearlstein RM (1992) Theory of the optical spectra of the bacteriochlorophyll a antenna protein trimer from Prosthecochloris aestuarii. Photosynth Res 31: 213–226.

    Article  CAS  Google Scholar 

  • Perczel A, Hollósi M, Tusnády G and Fasman GD (1991) Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins. Protein Eng 4: 669–679.

    Article  PubMed  CAS  Google Scholar 

  • Philipson KD and Sauer K (1973) Light-scattering effects on the circular dichroism of chloroplasts. Biochemistry 12: 3454–3458.

    PubMed  CAS  Google Scholar 

  • Pribic R, Van Stokkum IHM, Chapman D, Haris PI and Bloemendal M (1993) Protein secondary structure from Fourier transform infrared and/or circular dichroism spectra. Anal Biochem 214: 366–378.

    Article  PubMed  CAS  Google Scholar 

  • Provencher SW and Glöckner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20: 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Sauer K (1972) Circular dichroism and optical rotatory dispersion of photosynthetic organelles and their component pigments. Meth Enzymol 24: 206–218.

    PubMed  CAS  Google Scholar 

  • Scheer H (1982) Phycobiliproteins: molecular aspects of photosynthetic antenna system. In: Fong FK (ed) Light Reaction Path of Photosynthesis, pp 7–45. Springer Verlag, Berlin.

    Google Scholar 

  • Scherer POJ, Fischer SF (1991) Interpretation of optical reaction center spectra. In: Scheer H (ed) Chlorophylls, pp 1079–1093. CRC Press, Boca Raton.

    Google Scholar 

  • Scherz A (1992) Exciton coupling calculations for optical spectra. Isr J Chem 32: 491–495.

    Google Scholar 

  • Scherz A and Parson WW (1986) Interactions of the bacteriochlorophylls in antenna bacteriochlorophyll-protein complexes of photosynthetic bacteria. Photosynth Res 9: 21–30.

    Article  CAS  Google Scholar 

  • Scherz A, Rosenbach-Belkin V, Fisher JRE (1991) Chlorophyll aggregates in aqueous solutions. In: Scheer H (ed) Chlorophylls, pp 238–268. CRC Press, Boca Raton.

    Google Scholar 

  • Shindo Y (1985) On the problems of CD spectropolarimeter (IV) Artifacts due to the light scattering by small particles. Appl Spectr 39: 713–715.

    CAS  Google Scholar 

  • Shindo Y, Nakagawa M and Ohmi Y (1985) On the problems of CD spectropolarimeters. II. Artifacts in CD spectrometers. Appl Spectr 39: 860–868.

    CAS  Google Scholar 

  • Shotton D and White N (1989) Confocal scanning microscopy: three-dimensional biological imaging. Trends Biochem Sci 14: 435–439.

    Article  PubMed  CAS  Google Scholar 

  • Shubin VV, Tsuprun VL, Bezsmertnaya IN and Karapetyan NV (1993) Trimeric forms of the Photosystem I reaction center complex pre-exist in the membranes of the cyanobacterium Spirulina platensis. FEES Lett 334: 79–82.

    Article  CAS  Google Scholar 

  • Steinberg IZ (1978) Circularpolarized luminescence. Meth Enzymol 49: 179–199.

    PubMed  CAS  Google Scholar 

  • Sundqvist C, Ryberg H, Böddi B and Láng F (1980) Spectral properties of a long-wavelength absorbing form of protochlorophyll in seeds of Cyclanthera explodens. Physiol Plant 48: 297–301.

    CAS  Google Scholar 

  • Sutherland JC (1978) The magnetic optical activity of porphyrins. In: The Porphyrins. Vol III, pp 225–247. Academic Press, New York.

    Google Scholar 

  • Sutherland JC and Holmquist B (1980) Magnetic circular dichroism of biological molecules. Ann Rev Biophys Bioeng 9: 293–326.

    CAS  Google Scholar 

  • Szitó T, Garab G, Mustárdy L, Kiss JG and Faludi-Dániel Á (1984) Increasing fluctuation in orientation of pigment-protein complexes within photosynthetic membranes treated with linolenic acid. Photobiochem Photobiophys 8: 239–249.

    Google Scholar 

  • Szitó T, Zimányi L and Faludi-Dániel A (1985) Fluorescenceated with linolenic acid. Orientation of the Photosystem I core complex within the membrane. Biochim Biophys Acta 808: 428–436.

    Google Scholar 

  • Tinoco IJ (1962) Theoretical aspectsof opticalactivity. Part Two: Polymers. Adv Chem Phys 4: 113–160.

    CAS  Google Scholar 

  • Tinoco IJ and Williams ALJ (1984) Differential absorption and differential scattering of circularly polarized light: Applications to biological macromolecules. Ann Rev Phys Chem 35: 329–355.

    Article  CAS  Google Scholar 

  • Tinoco IJ, Mickols W, Maestre MF and Bustamante C (1987) Absorption, scatering, and imaging of biomolecular structures with polarized light. Ann Rev Biophys Biophys Chem 16: 319–349.

    Article  CAS  Google Scholar 

  • Tlalka M and Gabrys H (1993) Influence of calciumon blue-light-induced chloroplastmovement in Lemna trisulca L. Planta 189: 491–498.

    Article  CAS  Google Scholar 

  • Van Amerongen H and Struve WS (1995) Polarized optical spectroscopy of chromoproteins. Meth Enzymol 246: 259–283.

    PubMed  CAS  Google Scholar 

  • Van Amerongen H, Vasmel H and Van Grondelle R (1988) Linear dichroism of chlorosomes from Chloroflexus aurantiacus in compressed gels andelectric fields. Biophys J 54: 65–76.

    Google Scholar 

  • Van Amerongen H, Kwa SLS, Van Bolhuis BM and Van Grondelle R (1994) Polarized fluorescence and absorption of macroscopically aligned light harvesting complex II. Biophys J 67: 837–847.

    PubMed  CAS  Google Scholar 

  • Van der Vos R, Van Leeuwen PJ, Braun P and Hoff A (1992) Analysis of the optical absorbance spectra of D1-D2-cytochrome b-559 complexes by absorbance-detected magnetic resonance. Structural properties of P680. Biochim Biophys Acta 1140: 184–198.

    Google Scholar 

  • Van Dorssen RJ, Vasmel H and Amesz J (1985) Antenna organization and energy transfer in membranes of Heliobacterium chlorum. Biochim Biophys Acta 809: 199–203.

    Google Scholar 

  • Van Grondelle R, Dekker JP, Gillbro T and Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65.

    CAS  Google Scholar 

  • Van Gurp M, Van Ginkel G and Levine YK (1988) Orientational properties of biological pigments in ordered systems studied with polarized light: photosynthetic pigment-protein complexes in membranes. J Theor Biol 131: 333–349.

    PubMed  Google Scholar 

  • Van Gurp M, Van der Heide U, Verhagen J, Piters T, Van Ginkel G and Levine YK (1989) Spectroscopic and orientational properties of chlorophyll a and chlorophyll b in lipid membranes. Photochem Photobiol 49: 663–672.

    Google Scholar 

  • Van Haeringen B, Dekker JP, Bloemendal M, Rögner M, Van Grondelle R and Van Amerongen H (1994) The simultaneous measurement of electric birefringence and dichroism. A study on Photosystem 1 particles. Biophys J 67: 411–417.

    PubMed  Google Scholar 

  • Van Metter RL (1977) Excitation energy transfer in the light-harvesting chlorophyll a/b protein. Biochim Biophys Acta 462: 642–658.

    PubMed  Google Scholar 

  • Vasmel H, Van Dorssen RJ, de Vos GJ and Amesz J (1986) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. I. The cytoplasmic membrane. Photosynth Res 7: 281–294.

    Article  CAS  Google Scholar 

  • Verméglio A, Breton J and Mathis P (1976) Trapping at low temperature of oriented chloroplasts: Application to the study of antenna pigments and of the trap of Photosystem-1. J Supramol Struct 5: 109–117.

    PubMed  Google Scholar 

  • Verméglio A, Garcia D, Breton J (1990) Cytochrome arrangement in reaction centers of different species of photosynthetic bacteria. In: Michel-Beyerle M-E (ed) Reaction Centers of Photosynthetic Bacteria, pp 19–29. Springer-Verlag, Berlin.

    Google Scholar 

  • Visschers RW, Chang MC, Van Mourik F, Parkes-Loach PS, Heller BA, Loach PA, Van Grondelle R (1991) Fluorescence polarization and low-temperature absorption spectroscopy of asubunit form of light-harvesting complex I from purple photosynthetic bacteria. Biochemistry 30: 5734–5742.

    Article  PubMed  CAS  Google Scholar 

  • Woody RW (1985) Circular dichroism of peptides. In: Hraby VJ (ed) The Peptides, pp 15–114. Academic Press, New York.

    Google Scholar 

  • Wu K, Geng L, Joseph MJ and McGown LB (1993) Steady-state and lifetime-resolved fluorescence-detected circular dichroism using a modified phase-modulation spectrofluorometer. Anal Chem 65: 2339–2345.

    CAS  Google Scholar 

  • Xie X and Simon JD (1991) A picosecond circular dichroism study of photosynthetic reaction centers from Rhodobacter sphaeroides. Biochim Biophys Acta 1057: 131–139.

    PubMed  CAS  Google Scholar 

  • Zhou W, Lo Brutto R, Lin S and Blankenship RE (1994) Redox effects on the bacteriochlorophyll a-containing Fenna-Matthews-Olson protein from Chlorobium tepidum. Photosynth Res 41: 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Zuber H, Brunisholz RE (1991) Structure and function of antenna polypeptides and chlorophyll-protein complexes: principles and variability. In: Scheer H (ed) Chlorophylls, pp 627–703. CRC Press, Boca Raton.

    Google Scholar 

  • Zucchelli G, Dainese P, Jennings RC, Breton J, Garlaschi FM and Bassi R (1994) Gaussian decomposition of absorption and linear dichroism spectra of outer antenna complexes of photosystem II. Biochemistry 33: 8982–8990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Garab, G. (1996). Linear and Circular Dichroism. In: Amesz, J., Hoff, A.J. (eds) Biophysical Techniques in Photosynthesis. Advances in Photosynthesis and Respiration, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47960-5_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47960-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3642-6

  • Online ISBN: 978-0-306-47960-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics