Skip to main content

Bacteriochlorophyll-Containing Rhizobium Species

  • Chapter
Anoxygenic Photosynthetic Bacteria

Summary

The Green Revolution has allowed food production in many developing countries to keep pace with population growth. But the use of chemical fertilizers as a source of fixed nitrogen is expensive and creates environmental problems. The United States Agency for International Development sponsored a collaboration between U. S. and Indian scientists to develop sources ofbiologically-fixed nitrogen fertilizers. This effort led to the discovery that photosynthetic rhizobia are found in nitrogen-fixing nodules located on the stems of Aeschynomene, a legume used as a green manure in rice fields. Such rhizobia now have been isolated from Aeschynomene nodules and soils throughout the world. Photosynthetic rhizobia which nodulate a different genus, Lotononis, have been discovered recently.

The rhizobium has the photosynthetic properties of aerobic anoxygenic phototrophs. It will grow, produce the photosynthetic system and perform photosynthetic electron transport only under aerobic conditions. It can fix nitrogen in ex planta culture and grow in the absence of any other source of fixed nitrogen. Phylogenetic studies based on 16S rRNA sequences and numerical taxonomy suggest that all of the Aeschynomene isolates are closely related to each other and form a cluster with Bradyrhizobium and Rhodopseudomonas palustris in the alpha-2 subdivision of the class Proteobacteria.

Formation of the photosynthetic system is triggered by visible and far-red light, and is suppressed by visible light. The photosynthetic system of the stem nodule endophytes probably provides energy for nitrogen fixation, diminishing competition between carbon and nitrogen fixation and allowing for more efficient plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adebayo A, Watanabe I and Ladha JK (1989) Epiphytic occurrence of Azorhizobium caulinodans and other rhizobia on host and nonhost legumes. Appl Environ Microbiol 55: 2407–2409

    PubMed  Google Scholar 

  • Alazard D (1985) Stem and root nodulation in Aeschynomene spp. Appl Environ Microbiol 50: 732–734

    PubMed  Google Scholar 

  • Alazard D (1990) Nitrogen fixation in pure culture by rhizobia isolated from stem nodules of tropical Aeschynomene species. FEMS Microbiol Lett 68: 177–182

    Article  CAS  Google Scholar 

  • Arora N (1954) Morphological development ofthe root and stem nodules of Aeschynomene indica L. Phytomorphology 4:265–272

    Google Scholar 

  • Bauer, WD (1981) Infection of legumes by rhizobia. Ann Rev Plant Physiol 32: 407–449

    CAS  Google Scholar 

  • de Bruijn FJ (1988) The unusual symbiosis between the diazotrophic stem-nodulating bacterium Azorhizobium caulinodans ORS571 and its host, the tropical legume Sesbania rostrata. In: Kasuge T and Nester EW (eds) Plant Microbe Interactions Molecular and Genetic Perspectives, Vol. 3, pp 457–504. McGraw-Hill, New York

    Google Scholar 

  • Chandler MR, Date RA and Roughley, RJ (1982) Infection and root nodule development in Stylosanthes species by Rhizobium. J Exp Bot 33: 47–57

    Google Scholar 

  • Chang GG, Schaefer MR and Grossman AR (1992) Complementation of a red-light-indifferent cyanobacterial mutant. Proc Natl Acad Sci USA 89: 9415–9419

    Google Scholar 

  • Drews G (1960) Untersuchungen zur Substruktur der ‘Chromatophoren’ von Rhodospirillum rubrum und Rhodospirillum molischianum. Arch Mikrobiol 36: 99–108

    CAS  PubMed  Google Scholar 

  • Dreyfus B and Dommergues YR (1981) Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiol Lett 10: 313–317

    Article  CAS  Google Scholar 

  • Dreyfus B, Garcia JL and Gillis M (1988) Characterization of Azorhizobium caulinodans, gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38: 89–98

    CAS  Google Scholar 

  • Eaglesham ARJ and Ayanaba A (1984) Tropical stress ecology of Rhizobium root nodulation and legume N2 fixation. In: Subba Rao NS (ed) Current Developments in Biological Nitrogen Fixation, pp 1–35. Oxford and IBH Publishing Co, New Delhi

    Google Scholar 

  • Eaglesham ARJ and Szalay AA (1983) Aerial stem nodules on Aeschynomene spp. Plant Sci Lett 29: 265–272

    CAS  Google Scholar 

  • Eaglesham ARJ, Ellis JM, Evans WR, Fleischman DE, Hungria M and Hardy RWF (1990) The first photosynthetic N2-fixing Rhizobium. In: Gresshoff PM, Roth LE, Stacey G and Newton WE (eds) Nitrogen Fixation: Achievements and Objectives, pp 805–811. Chapman and Hall, New York, London

    Google Scholar 

  • Eardly BD and Eaglesham ARJ (1985) Fixation of nitrogen and carbon by legume stem nodules. In: Evans HJ, Bottomley PJ and Newton WE (eds) Nitrogen Fixation Research Progress, p 324. Martinus Nijhoff, The Hague

    Google Scholar 

  • Evans WR, Fleischman DE, Calvert HE, Pyati PV, Alter GM and Subba Rao NS (1990) Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium strain BTAi 1. Appl Environ Microbiol 56: 3445–3449

    CAS  PubMed  Google Scholar 

  • Faria SM de, Hay GT and Sprent JI. (1988) Entry ofrhizobia into roots of Mimosa scabrella Bentham occurs between epidermal cells. J Gen Microbiol 134: 2291–2296

    Google Scholar 

  • Fisher RF and Long SR (1992) Rhizobium-plant signal exchange. Nature 357: 655–660

    Article  CAS  PubMed  Google Scholar 

  • Fleischman D, Evans WR, Shanmugasundaram S and Shanmugasundaram S (1988) Induction of photosynthetic capability in a Rhizobium. Plant Physiology (Supplement) 86: 21

    Google Scholar 

  • Fleischman DE, Evans WR, Eaglesham ARJ, Calvert HE, Dolan E Jr., Subba Rao NS and Shanmugasundaram S (1991) Photosynthetic properties of stem nodule rhizobia. In: Dutta SK and Sloger C (eds) Biological Nitrogen Fixation Associated with Rice Production, pp 39–46. Oxford and IBH Publishing, New Delhi

    Google Scholar 

  • Fyson A and Sprent JI (1980) A light and scanning electron microscope study of stem nodules in Vicia faba L. J Exp Botany 31: 1101–1106

    Google Scholar 

  • Gilles-Gonzalez MA, Ditta GS and Helinski DR (1991) A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350: 170–172

    Article  CAS  PubMed  Google Scholar 

  • Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS, Cooper JE, De Ley DJ, Jarvis BDW, Roslycky EB Strijdom BW and Young JPW (1991) Proposed minimal standards for the description of new genera and species of root-and stemnodulating bacteria. Int J Syst Bacteriol 41: 582–587

    Google Scholar 

  • Harashima K, Kawazoe K, Yoshida I and Kamata H (1987) Light-stimulated aerobic growth of Erythrobacter species OCh 114. Plant Cell Physiol 28: 365–374

    CAS  Google Scholar 

  • Hungria M, Ellis JM, Eaglesham, ARJ and Hardy RWF (1990) Light-driven 14Co2 fixation, light-decreased O2 uptake, and acetylene reduction activity by free-living Rhizobium strain BTAi 1. In: Greshoff PM, Roth LE, Stacey G and Newton WE (eds) Nitrogen Fixation: Achievements and Objectives, p 351. Chapman and Hall, New York, London

    Google Scholar 

  • Hungria M, Eaglesham ARJ and Hardy RWF. (1992) Physiological comparisons of root and stem nodules of Aeschynomehe scabra and Sesbania rostrata. Plant Soil 139: 7–13

    Article  CAS  Google Scholar 

  • Iba K and Takamiya K (1989) Action spectra for inhibition by light of accumulation of bacteriochlorophyll and carotenoid during aerobic growth of photosynthetic bacteria. Plant Cell Physiol 30: 471–477

    CAS  Google Scholar 

  • Jarvis BDW, Gillis M and De Ley J (1986) Intra-and intergeneric similarities between the ribosomal ribonucleic acid cistrons of Rhizobium and Bradyrhizobium species and some related bacteria. Int J Syst Bacteriol 36: 129–138

    CAS  Google Scholar 

  • Kramer DM, Robinson HR and Crofts AR (1990) A portable multi-flash kinetic fluorimeter for measurement of donor and acceptor reactions of Photosystem 2 in leaves of intact plants under field conditions. Photosynthesis Research 26: 181–193

    CAS  Google Scholar 

  • Ladha JK and So RB (1994) Numerical taxonomy of phototrophic rhizobia nodulatmg Aeschynomene species. Intl J Syst Bacteriol 44: 62–73

    Google Scholar 

  • Ladha JK, Pareek RP, So R and Becker M (1990) Stem nodule symbiosis and its unusual properties. In: Greshoff PM, Roth LE, Stacey G and Newton WE (eds) Nitrogen Fixation: Achievements and Objectives pp 633–640 Chapman and Hall, New York, London

    Google Scholar 

  • Ladha JK, Pareek RP and Becker M (1992) Stem-nodulating legume-Rhizobium symbiosis and its agronomic use in lowland rice. Advances in Soil Science 20: 147–192

    Google Scholar 

  • Liesack W and Stackebrandt E (1992) Occurrence of a novel group of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol 174: 5072–5078

    CAS  PubMed  Google Scholar 

  • Long SR and Staskawicz BJ (1993) Prokaryotic Plant Parasites. Cell 73: 921–935

    Article  CAS  PubMed  Google Scholar 

  • Lorquin J, Molouba F, Dupuy N, Ndiaye S, Alazard D, Gillis M and Dreyfus B (1993) Diversity of photosynthetic Bradyrhizobium strains from stem nodules of Aeschynomene species. In: Palacios M, Mora J and Newton WE (eds) New Horizons in Nitrogen Fixation, pp 683–689. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Nambiar PTC, Dart PJ, Rao BS and Rao VR (1982) Nodulation in the hypocotyl region of ground nut (Arachis hypogeae). Exptl Agric 18: 203–207

    Google Scholar 

  • Oelze J and Drews G. (1973) Membranes of Photosynthetic Bacteria. In: Lascelles J. (ed) Microbial Photosynthesis, pp 137–144. Dowden, Hutchinson and Ross, Stroudsburg, PA

    Google Scholar 

  • OkamuraK, Takamiya K and Nishimura M (1985) Photosynthetic electron transfer system is inoperative in anaerobic cells of Erythrobacter species strain OCh 114. Arch Microbiol 142: 12–17

    Google Scholar 

  • Schaede R (1940) Die knollchen der adventiven wasserwurzeln von Neptunia oleracea und ihre bakteriensymbiose. Planta 31: 1–21

    Google Scholar 

  • Shiba T (1984) Utilization of light energy by the strictly aerobic bacterium Erythrobacter sp. OCH 114. J Appl Microbiol 30: 239–244

    CAS  Google Scholar 

  • Sprent JI and Sprent P. (1990) Nitrogen Fixing Organisms: Pure and applied aspects. Chapman and Hall, London

    Google Scholar 

  • Stowers MD and Eaglesham ARJ (1983) A stem-nodulating Rhizobium with physiological characteristics of both fast and slow growers. J Gen Microbiol 129: 3651–3655

    CAS  Google Scholar 

  • Subba Rao NS (1988) Microbiological aspects of green manure in lowland rice soil. In: Green Manuring in Rice Farming, pp 131–149). International Rice Research Institute, Manila

    Google Scholar 

  • Subba Rao NS, Gaur YD and Murthy A (1991) Biology of root and stem nodules of Aeschynomene aspera and A. indica, potential green manure plants. In: Dutta SK and Sloger C (eds) Biological Nitrogen Fixation Associated with Rice Production, pp 31–37. Oxford and IBH Publishing, New Delhi

    Google Scholar 

  • Tauschel HD and Drews G. (1968) Thylakoid morphogenese bei Rhodopseudomonas palustris. Arch Mikrobiol 59: 381–404

    Google Scholar 

  • van Berkum P, Tuly RE and Keister DL (1995) Nonpigmented and bacteriochlorophyll-containing bradyrhizobia isolated from Aeschynomene indica. Appl Environ Microbiol 61: 623–629

    Google Scholar 

  • Verma DPS (1992) Signals in root nodule organogenesis and endocytosis of Rhizobium, Plant Cell 4: 373–382

    Article  CAS  PubMed  Google Scholar 

  • Walter CA and Bien A (1989) Aerial root nodules in the tropical legume Pentachlora macrolobata. Oecologia 80: 27–31

    Article  Google Scholar 

  • Wettlaufer SH and Hardy RWF (1992) Effect of light and organic acids on oxygen uptake by BTAi 1, a photosynthetic rhizobium. Appl Environ Microbiol 58: 3830–3883

    CAS  PubMed  Google Scholar 

  • Wettlaufer SH and Hardy RWF (1993) The photosynthetic nitrogen-fixing microsymbiont Bradyrhizobium, strain BTAi 1: Light quality and intensity effects on bacteriochlorophyll production and accumulation. Plant Physiol (Suppl.) 102: 19

    Google Scholar 

  • Willems A and Collins MD (1992) Evidence for a close genealogical relationship between Afipia (the causal organism of cat scratch disease), Bradyrhizobium japonicum and Blastobacterdenitrificans. FEMS Microbiol Lett 96: 241–246

    Article  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271.

    CAS  PubMed  Google Scholar 

  • Wong FYK, Stackebrandt E, Ladha JK, Fleischman DE, Date RA and Fuerst JA (1994) Phylogenetic analysis of Bradyrhizobium japonicum and photosynthetic stem-nodulatin bacteria from Aeschynomene species grown in separated geographical regions. Appl Environ Microbiol 60: 940–946

    CAS  PubMed  Google Scholar 

  • Yanagi M and Yamasato K (1993) Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107: 115–120

    CAS  PubMed  Google Scholar 

  • Yatazawa M, Hambali GO and Wiriadinata H (1987) Nitrogenfixing stem nodules and stem-warts of tropical plants. Biotropica Spec Publ 31: 191–205

    Google Scholar 

  • Yatazawa M and Yoshida S. (1979) Stem nodules in Aeschynomene indica and their capacity of nitrogen fixation. Phys Plantarum 45: 293–295

    CAS  Google Scholar 

  • Young JPW, Downer HL and Eardly BD (1991) Phylogeny of the phototrophic Rhizobium strain BTAi 1 by polymerase chain reaction-based sequencing of a 16S rRNA segment. J Bacteriol 173:2271–2277

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fleischman, D.E., Evans, W.R., Miller, I.M. (1995). Bacteriochlorophyll-Containing Rhizobium Species. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics