Skip to main content

Taxonomy, Physiology and Ecology of Heliobacteria

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

Heliobacteria are anoxygenic phototrophs that contain bacteriochlorophyll g as their sole chlorophyll pigment. These organisms are primarily soil residents and are phylogenetically related to Gram-positive bacteria, in particular to the endospore-forming Bacillus/Clostridium line. Some species of heliobacteria produce heat resistant endospores containing dipicolinic acid and elevated Ca2+ levels. Heliobacteria can grow photoheterotrophically on a limited group of organic substrates and chemotrophically (anaerobically) in darkness by pyruvate or lactate fermentation; they are also active nitrogen-fixers. Their photosynthetic system resembles that of photosystem I of green plants but is simpler, containing a small antenna closely associated with the reaction center located in the cytoplasmic membrane; no chlorosomes typical of the green sulfur bacteria or differentiated internal membranes typical of purple bacteria are found in the heliobacteria. Heliobacteria are apparently widely distributed in rice soils and occasionally found in other soils. The ecology of heliobacteria may be tightly linked to that of rice plants, and the ability of heliobacteria to produce endospores probably has significant survival value in the highly variable habitat of rice soils. The unique assemblage of properties shown by the heliobacteria has necessitated creation of a new taxonomic family of anoxygenic phototrophic bacteria, the Heliobacteriaceae, to accommodate organisms of this type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aase B, Jantzen E, Bryn K and Ormerod JG (1994) Lipids of heliobacteria are characterized by a high proportion of monoenoic fatty acids with variable double bond positions. Photosynth Res 41: 67–74

    Article  CAS  Google Scholar 

  • Beer-Romero P (1986) Comparative studies on Heliobacterium chlorum, Heliospirillum gestii and Heliobacillus mobilis. MA. Thesis, Indiana University, Bloomington

    Google Scholar 

  • Beer-Romero P, and Gest H (1987) Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacteriochlorophyll g. FEMS Microbiol Lett 41: 109–114

    Article  CAS  Google Scholar 

  • Beer-Romero P, Favinger JL and Gest H (1988) Distinctive properties of bacilliform photosynthetic heliobacteria. FEMS Microbiol Lett 49: 451–454

    Article  CAS  Google Scholar 

  • Beck H, Hegeman GD and White D (1990) Fatty acid and lipopolysaccharide analyses of three Heliobacterium spp. FEMS Microbiol Lett 69: 229–232

    Article  CAS  Google Scholar 

  • Bishop PE and Joerger RD (1990) Bacterial alternative nitrogen fixation systems. Ann Rev Plant Physiol Plant Mol Bio. 41: 109–125

    CAS  Google Scholar 

  • Bishop PE and Premakumar R (1992) Alternative nitrogen fixation systems. In: Staccy G, Burris RH and Evans HJ (eds) Biological Nitrogen Fixation, pp 736–762. Chapman and Hall, New York

    Google Scholar 

  • Brockmann H and Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136: 17–19

    Article  CAS  Google Scholar 

  • Buresh RJ, Casselman ME and Patrick WH, Jr (1980) Nitrogen fixation in flooded soil systems, a review. Adv Agron 33: 149–192

    CAS  Google Scholar 

  • Charnock C, Refseth UH, Sirevåg R (1992) Malate dehydrogenase from Chlorobium vibrioforme, Chlorobium tepidum and Heliobacterium gestii: Purification, characterization and investigation of dinucleotide binding by dehydrogenases by use of empirical methods of protein sequence analysis. J Bacteriol 174: 1307–1313

    CAS  PubMed  Google Scholar 

  • De Wit R and Van Gemerden H (1990) Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimes in the light. FEMS Microbiol Ecol 73: 69–76

    Google Scholar 

  • Gest H and Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a ‘new’ form of bacteriochlorophyll. Arch Microbiol 136: 11–16

    Article  CAS  Google Scholar 

  • Gest H, Favinger JL and Madigan MT (1985) Exploitation of N2 fixation capacity for enrichment of anoxygenic photosynthetic bacteria in ecological studies. FEMS Microbiol Ecol 31: 317–322.

    Article  CAS  Google Scholar 

  • Habte M and Alexander M (1980) Nitrogen fixation by photosynthetic bacteria in lowland rice culture. Appl Environ Microbiol 39: 342–347

    CAS  PubMed  Google Scholar 

  • Imhoff JF (1988) Lipids, fatty acids and quinones in taxonomy and phylogeny In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Träper HG (eds) Green Photosynthetic Bacteria, pp 223–232. Plenum Press, New York

    Google Scholar 

  • Joliffe LK, Doyle RJ and Streips UN (1981). The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25: 753–763

    Google Scholar 

  • Kimble LK and Madigan MT (1992a) Nitrogen fixation and nitrogen metabolism in heliobacteria. Arch Microbiol 158: 155–161

    Article  CAS  Google Scholar 

  • Kimble LK and Madigan MT (1992b) Evidence for an alternative nitrogenase system in Heliobacterium gestii. FEMS Microbiol Lett 100: 251–256

    Article  Google Scholar 

  • Kimble LK and Madigan MT (1994) Isolation and characterization of thermophilic heliobacteria. Abstract I-9 of the American Society for Microbiology General Meeting, Las Vegas, NV

    Google Scholar 

  • Kimble LK, Stevenson AK and Madigan MT (1994). Chemotrophic growth of heliobacteria in darkness. FEMS Microbiol Lett 115: 51–56

    CAS  PubMed  Google Scholar 

  • Kimble LK, Mandelco L, Woese CR and Madigan MT (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163: 259–267

    CAS  Google Scholar 

  • Kobayashi M, Watanabe T, Ikegami I, van de Meent EJ and Amesz J. (1991) Enrichment of bacteriochlorophyll g’ in membranes of Heliobacterium chlorum by ether extraction. Unequivocal evidence for its existence in vivo. FEBS Lett 284: 129–131

    Article  CAS  PubMed  Google Scholar 

  • Ludden PW, and Roberts GP (1989) Regulation of nitrogenase activity by reversible ADP-ribosylation. In: Horecher B, Stadtman E, Chock PB and Levitzki A (eds) Current Topics in Cellular Regulation, Vol 30. Academic Press, Orlando, FL

    Google Scholar 

  • Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: A.Z.B. Zehnder (ed) Biology of Anaerobic Microorganisms, pp 39–111. John Wiley and Sons, New York

    Google Scholar 

  • Madigan MT (1992) The family Heliobacteriaceae. In: Balows A, Trüper HG, Dworkin M and Schleifer K-H (eds) The Prokaryotes, second edition pp 1981–1992, Springer-Verlag, New York

    Google Scholar 

  • Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR and Katz JJ (1987) Bacteriopheophytin g: Properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84: 2570–2574

    CAS  Google Scholar 

  • Nesbakken T, Kolsaker P and Ormerod J (1988) Mechanism of biosynthesis of 2-oxo-3-methylvalerate in Chlorobium vibrioforme. J Bacteriol 170: 3287–3290

    CAS  PubMed  Google Scholar 

  • Ormerod J, Nesbakken T and Torgersen Y (1990) Phototrophic bacteria that form heat resistant endospores. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol. IV, pp 935–938. Kluwer Academic, Dordrecht

    Google Scholar 

  • Pickett MW, Williamson MP and Kelly DJ (1994) An enzyme and 13C-NMR study of carbon metabolism in heliobacteria. Photosynth Res 41: 75–88

    Article  CAS  Google Scholar 

  • Pfennig N (1989) Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel HG and Bowien B (eds), Autotrophic Bacteria pp 97–116. Springer-Verlag, New York

    Google Scholar 

  • Redburn AC and Patel BKC (1993) Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol Letts 113: 81–86

    CAS  Google Scholar 

  • Starynin DA and Gorlenko VM (1993) Sulphide-oxidizing spore forming heliobacteria isolated from a thermal sulphide spring. M icrobiology (English translation of Mikrobiologiya) 62: 343–347

    Google Scholar 

  • Stevenson AK (1993) Isolation and characterization of heliobacteria from soil habitats worldwide. MA Thesis, Department of Microbiology, Southern Illinois University, Carbondale

    Google Scholar 

  • Stevenson AK, Kimble LK and Madigan MT (1993) Isolation and characterization of heliobacteria from soil habitats worldwide. Abstract I-62 of the American Society for Microbiology General Meeting, Atlanta, GA

    Google Scholar 

  • Torgersen YA (1989) Karakterisering av en obligat fototrof anaerob bakterie som inneholder bacterioklorfyll g. Cand Scient Thesis. Oslo University

    Google Scholar 

  • Trost JR (1990) Characterization of the photosynthetic reaction center-core antenna complex from the heliobacteria. Ph.D. Dissertation, Arizona State University, Tempe

    Google Scholar 

  • Woese CR(1987) Bacterial evolution. Microbiol Revs 51: 221–271

    CAS  Google Scholar 

  • Woese CR, Debrunner-Vossbrinck BA, Oyaizu H, Stackebrandt E and Ludwig W (1985) Gram-positive bacteria: Possible photosynthetic ancestry. Science 229: 762–765

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

This chapter is dedicated to Professor Howard Gest within whose laboratory the heliobacteria were first discovered and whose infectious enthusiasm for the photosynthetic bacteria has stimulated many current workers in this field.

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Madigan, M.T., Ormerod, J.G. (1995). Taxonomy, Physiology and Ecology of Heliobacteria. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics