Skip to main content

Community Structure and Functional Dynamics of Benthic Microalgae in Salt Marshes

  • Chapter
Concepts and Controversies in Tidal Marsh Ecology

Abstract

Benthic microalgae are a ubiquitous feature in sediments directly exposed to full sunlight or shaded by a vascular plant canopy in coastal salt marshes. Diatoms, cyanobacteria, and green algae are the dominant groups. Of these, diatoms are universally present and abundant, exhibit migratory rhythms driven mainly by light, and are by far the taxonomically most diverse group. Dense mats of cyanobacteria and secondarily green algae frequently develop where light levels are high. The more abundant species of all three algal groups are widely distributed within and among salt marshes of the United States and Europe. Standing crops of benthic microalgae beneath various vascular plant canopies exhibit mean annual values of 60 to 160 mg chl a m−2. Annual benthic microalgal production (BMP) has been shown to range from 28 g C m−2 y−1 beneath Juncus roemerianus to 314 g C m−2 y−1 beneath Jaumea carnosa. In general, BMP increases in a southerly direction in Atlantic coast marshes but is lowest in Gulf Coast marshes. In Atlantic and southern California marshes a significant portion of benthic microalgal production occurs when the overstory vascular plants are dormant. Experimental manipulations have shown that BMP and biomass beneath Spartina alterniflora are limited by nitrogen supplies and grazing activities. Manipulation of light appears to primarily affect the relative dominance of diatoms and cyanobacteria in the benthic microalgal assemblage. The ratio of annual BMP to net aerial production of the overstory vascular plant canopy is 10 to 60% in Atlantic and Gulf Coast marshes and 75 to 140% in a southern California marsh. The benthic microalgal portion of this two component productivity system has been shown by multiple stable isotope studies to be a major component of salt marsh food webs. Diatoms, in particular, are the preferred food item of a diverse array of invertebrate and fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature Cited

  • Admiraal, W. 1977. Tolerance of estuarine benthic diatoms to high concentrations of ammonia, nitrite ion, nitrate ion and orthophosphate. Marine Biology 43:307–315.

    Article  CAS  Google Scholar 

  • -1984. The ecology of estuarine sediment-inhabiting diatoms. Progress in Phycological Research 3:269–322.

    Google Scholar 

  • Admiraal, W., H. Peletier and H. Zomer. 1982. Observations and experiments on the population dynamics of epipelic diatoms from an estuarine mudflat. Estuarine, Coastal and Shelf Science 14:471–487.

    Google Scholar 

  • Amspoker, M. C. and C. D. McIntire. 1978. Distribution of intertidal diatoms associated with sediments in Yaquina Estuary, Oregon. Journal of Phycology 14:387–395.

    Google Scholar 

  • Blair, S. M. 1983. Taxonomic treatment of the Chaetomorpha and Rhizoclonium species (Cladophorales: Chlorophyta) in New England. Rhodora 85:175–211.

    Google Scholar 

  • Blum, J. L. 1968. Salt marsh Spartinas and associated algae. Ecological Monographs 38:199–221.

    Google Scholar 

  • Brenner, D., I. Valiela and C. D. Van Raalte. 1976. Grazing by Talorchestia longicornis on an algal mat in a New England salt marsh. Journal of Experimental Marine Biology and Ecology 22:161–169.

    Article  Google Scholar 

  • Carman, K. R., J. W. Fleeger and S. M. Pomarico. 1997. Response of a benthic food web to hydrocarbon contamination. Limnology and Oceanography 42:561–571.

    Article  CAS  Google Scholar 

  • Carter, N. 1932. A comparative study of the algal flora of two salt marshes. Part 1. Journal of Ecology 20:341–370.

    Google Scholar 

  • -1933a. A comparative study of the algal flora of two salt marshes. Part II. Journal of Ecology 21:128–208.

    Google Scholar 

  • -1933b. A comparative study of the algal flora of two salt marshes. Part III. Journal of Ecology 21:385–403.

    Google Scholar 

  • Chapman, R. L. 1971. The macroscopic marine algae of Sapelo Island and other sites on the Georgia coast. Bulletin of the Georgia Academy of Science 29:77–89.

    Google Scholar 

  • Christian, R. R., K. Bancroft and W. J. Wiebe. 1978. Resistance of the microbial community within salt marsh soils to selected perturbations. Ecology 59: 1200–1210.

    Google Scholar 

  • Coleman, V. L. and J. M. Burkholder. 1995. Response of microalgal epiphyte communities to nitrate enrichment in an eelgrass (Zostera marina) meadow. Journal of Phycology 31:36–43.

    Article  CAS  Google Scholar 

  • Colijn, F. and V. N. de Jonge. 1984. Primary production of microphytobenthos in the Ems-Dollard estuary. Marine Ecology Progress Series 14:185–196.

    Google Scholar 

  • Connor, M.S. and J. M. Teal. 1982. The effect of feeding by mud snails, Ilyanassa obsoleta (Say), on the structure and metabolism of a laboratory benthic algal community. Journal of Experimental Marine Biology and Ecology 65:29–45.

    Article  CAS  Google Scholar 

  • Cook, L. L. and S. A. Whipple. 1982. The distribution of edaphic diatoms along environmental gradients of a Louisiana salt marsh. Journal of Phycology 18:64–71.

    Article  Google Scholar 

  • Creach, V. M. T. Schricke, G. Bertru and A. Mariotti. 1997. Stable isotopes and gut analyses to determine feeding relationships in saltmarsh macroconsumers. Estuarine, Coastal and Shelf Science 44:599–611.

    Article  CAS  Google Scholar 

  • Currin, C. A., S. Y. Newell and H. W. Paerl. 1995. The role of benthic microalgae and standing dead Spartina alterniflora in salt marsh food webs: implications based on multiple stable isotope analysis. Marine Ecology Progress Series 121:99–116.

    Google Scholar 

  • Currin, C. A. and H. W, Paerl 1998a. Environmental and physiological controls on diel patterns of N2 fixation in epiphytic cyanobacterial communities. Microbial Ecology 35:34–45.

    Article  PubMed  CAS  Google Scholar 

  • -1998b. Epiphytic nitrogen fixation associated with standing dead shoots of smooth cordgrass, Spartina alterniflora. Estuaries 21:108–117.

    CAS  Google Scholar 

  • Darley, W. M., C. L. Montague, F. G. Plumley, W. W. Sage and A. T. Psalidas. 1981. Factors limiting edaphic algal biomass and productivity in a Georgia salt marsh. Journal of Phycology 17:122–128.

    Article  Google Scholar 

  • Davis, M. W. and C. D. McIntire. 1983. Effects of physical gradients on the production dynamics of sediment-associated algae. Marine Ecology Progress Series 13:103–114.

    CAS  Google Scholar 

  • Deegan, L. A. and R. H. Garritt. 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147:31–47.

    Google Scholar 

  • De Niro, M. J. and S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495–506.

    Google Scholar 

  • -1981. Isotopic composition of cellulose from aquatic organisms. Geochimica et Cosmochimica Acta 45:1885–1894.

    Google Scholar 

  • Drum, R. W. and E. Webber. 1966. Diatoms from a Massachusetts salt marsh. Botanica Marina 9:70–77.

    Google Scholar 

  • Edgar, L. A. and J. D. Pickett-Heaps. 1984. Diatom locomotion. Progress in Phycological Research 3:47–88.

    Google Scholar 

  • Estrada, M., au I. Valiela and J. M. Teal. 1974. Concentration and distribution of chlorophyll in fertilized plots in a Massachusetts salt marsh. Journal of Experimental Marine Biology and Ecology 14:47–56.

    Article  Google Scholar 

  • Fallon, R. D., S. Y. Newell and L. C. Groene. 1985. Phylloplane algae of standing dead Spartina alterniflora. Marine Biology 90:121–127.

    Article  CAS  Google Scholar 

  • Fry, B. and E. B. Sherr. 1984. T3C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science 27:13–47.

    CAS  Google Scholar 

  • Gallagher, J. L. 1971. Algal productivity and some aspects of the ecological physiology of the edaphic communities of Canary Creek tidal marsh. Dissertation, University of Delaware, Newark, Delaware, USA.

    Google Scholar 

  • Gallagher, J. L. and F. C. Daiber. 1974. Primary production of edaphic algal communities in a Delaware salt marsh. Limnology and Oceanography 19:390–395.

    Google Scholar 

  • Gleason, D. F. and R. J. Zimmerman. 1984. Herbivory potential of postlarval brown shrimp associated with salt marshes. Journal of Experimental Marine Biology and Ecology 84: 235–246.

    Article  Google Scholar 

  • Haines, E. B. 1976. Stable carbon isotope ratios in the biota, soils and tidal water of a Georgia salt marsh. Estuarine, Coastal and Marine Science 4: 609–616.

    Article  CAS  Google Scholar 

  • Haines, E. B. and C. L. Montague. 1979. Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology 60: 48–56.

    Google Scholar 

  • Hall, S. L. and F. M. Fisher, Jr. 1985. Annual productivity and extracellular release of dissolved organic compounds by the epibenthic algal community of a brackish marsh. Journal of Phycology 21:277–281.

    CAS  Google Scholar 

  • Jones, R. C. 1980. Productivity of algal epiphytes in a Georgia salt marsh: effect of inundation frequency and implications for total marsh productivity. Estuaries 3:315–317.

    Google Scholar 

  • Jonge, V. N. de. 1985. The occurrence of “epipsammic ‘diatom populations: a result of interaction between physical sorting of sediment and certain properties of diatom species. Estuarine, Coastal and Shelf Science 21:607–622.

    Google Scholar 

  • Jönsson, B., K. Sundbäck and C. Nilsson. 1994. The upright life-form of an epipelic motile diatom: on the behaviour of Gyrosigma balticum. European Journal of Phycology 29:11–15.

    Google Scholar 

  • Kneib, R. T., A. E. Stiven and E. B. Haines. 1980. Stable carbon isotope ratios in Fundulus heteroclitus (L.) muscle tissue and gut contents from a North Carolina Spartina marsh. Journal of Experimental Marine Biology and Ecology 46: 89–98.

    Article  CAS  Google Scholar 

  • Kwak, T. J. and J. B. Zedler. 1997. Food web analysis of southern California coastal wetlands using multiple stableisotopes. Oecologia 110:262–277.

    Article  Google Scholar 

  • Lajtha, K. and R. H. Michener. 1994. Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, Boston, Massachusetts, USA.

    Google Scholar 

  • Leach, J. H. 1970. Epibenthic algal production in an intertidal mudflat. Limnology and Oceanography 15:514–521.

    Google Scholar 

  • Maclntyre, H. L., R. J. Geider and D. C. Miller. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19:186–201.

    Google Scholar 

  • Maples, R. S. 1982. Bluegreen algae of a coastal salt panne and surrounding angiosperm zones in a Louisiana salt marsh. Northeast Gulf Science 5:39–43.

    Google Scholar 

  • McIntire, C. D. 1973. Diatom associations in Yaquina Estuary, Oregon: a multivariate analysis. Journal of Phycology 9:254–259.

    Google Scholar 

  • -1978. The distribution of estuarine diatoms along environmental gradients: a canonical correlation. Estuarine and Coastal Marine Science 6:447–457.

    Article  Google Scholar 

  • McIntire, C. D. and W. W. Moore. 1977. Marine littoral diatoms: ecological considerations. Pages 333–371 in D. Werner, editor. The biology of diatoms. University of California Press, Berkeley, California, USA.

    Google Scholar 

  • McTigue, T. A. and R. J. Zimmerman. 1991. Carnivory vs. herbivory in juvenile Penaeus setiferus (Linnaeus) and Penaeus aztecus (Ives). Journal of Experimental Marine Biology and Ecology 151:1–16.

    Article  Google Scholar 

  • Miller, D. C., R. J. Geider and H. L. MacIntyre. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries 19:202–212.

    Google Scholar 

  • Montagna, P. A. 1984. In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. Marine Ecology Progress Series 18:119–130.

    Google Scholar 

  • Odum, E. P. and A. A. de la Cruz. 1963. Detritus as a major component of ecosystems. AIBS Bulletin 13:39–40.

    Google Scholar 

  • Otte, A. M. and V. J. Bellis. 1985. Edaphic diatoms of a low salinity estuarine marsh system in North Carolina — a comparative floristic study. The Journal of the Elisha Mitchell Scientific Society 10:116–124.

    Google Scholar 

  • Page, H. M. 1997. Importance of vascular plant and algal production to macroinvertebrate consumers in a southern California salt marsh. Estuarine, Coastal and Shelf Science 45:823–834.

    Article  Google Scholar 

  • Paterson, D. M. 1986 The migratory behaviour of diatom assemblages in a laboratory tidal micro-ecosystem examined by low temperature scanning electron microscopy. Diatom Research 1:227–239.

    Google Scholar 

  • Peterson, B. J. and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18:293–320.

    Article  Google Scholar 

  • Peterson, B. J. and R. W. Howarth. 1987. Sulfur, carbon and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnology and Oceanography 32:1195–1213.

    CAS  Google Scholar 

  • Peterson, B. J., R. W. Howarth and R. H. Garritt. 1986. Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow. Ecology 67:865–874.

    CAS  Google Scholar 

  • Piehler, M. F., C. A. Currin, R. Cassanova and H. W. Paerl. 1998. Development and N2-fixing activity of the benthic microbial community in transplanted Spartina alterniflora marshes in North Carolina. Restoration Ecology 6:290–296.

    Article  Google Scholar 

  • Pinckney, J., R. Papa and R. Zingmark. 1994a. Comparison of high-performance liquid chromatographic, spectrophotometric and fluorometric methods for determining chlorophyll a concentrations in estuarine sediments. Journal of Microbiological Methods 19:59–66.

    Article  CAS  Google Scholar 

  • Pinckney, J., Y. Piceno and C. R. Lovell. 1994b. Short-term changes in the vertical distribution of benthic microalgal biomass in intertidal muddy sediments. Diatom Research 9:143–153.

    Google Scholar 

  • Pinckney, J. and R. G. Zingmark. 1991. Effects of tidal stage and sun angles on intertidal benthic microalgal productivity. Marine Ecology Progress Series 76:81–89.

    Google Scholar 

  • -1993a. Biomass and production of benthic microalgal communities in estuarine habitats. Estuaries 16:887–897.

    CAS  Google Scholar 

  • -1993b. Modeling the annual production of intertidal benthic microalgae in estuarine ecosystems. Journal of Phycology 29:396–407.

    Google Scholar 

  • Polderman, P. J. 1975. The algal communities of the northeastern part of the saltmarsh “De Mok” on Texel (The Netherlands). Acta Botanica Neerlandica 24:361–378.

    Google Scholar 

  • -1978. Algae of saltmarshes on the south and southwest coasts of England. British Phycological Journal 13:235–240.

    Google Scholar 

  • Polderman, P. J. and R. A. Polderman-Hall. 1980. Algal communities in Scottish saltmarshes. British Phycological Journal 15:59–71.

    Google Scholar 

  • Pomeroy, L. R. 1959. Algal productivity in salt marshes of Georgia. Limnology and Oceanography 4:386–397.

    Google Scholar 

  • Pomeroy, L., W. Darley, E. Dunn, J. Gallagher, E. Haines and D. Whitney. 1981. Primary production. Pages 39–67 in Pomeroy, L. R. and R. G. Wiegert, editors. The ecology of a salt marsh. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Ralph, R. D. 1977. The Myxophyceae of the marshes of southern Delaware. Chesapeake Science 18:208–221.

    Google Scholar 

  • Robertson, J. R. and S. Y. Newell. 1982. Experimental studies of particle ingestion by the sand fiddler crab Uca pugilator (Bosc). Journal of Experimental Marine Biology and Ecology 52:1–21.

    Google Scholar 

  • Round, F. E. 1960. The diatom flora of a salt marsh on the River Dee. New Phytologist 59:332–348.

    Google Scholar 

  • Sage, W. W. and M. J. Sullivan. 1978. Distribution of bluegreen algae in a Mississippi Gulf Coast salt marsh. Journal of Phycology 14:333–337.

    Google Scholar 

  • Shaffer, G. P. and M. J. Sullivan. 1988. Water column productivity attributable to displaced benthic diatoms in well-mixed shallow estuaries. Journal of Phycology 24:132–140.

    Google Scholar 

  • Smith, D., R. G. Hughes and E. J. Cox. 1996. Predation of epipelic diatoms by the amphipod Corophium volutator and the polychaete Nereis diversicolor. Marine Ecology Progress Series 145:53–61.

    Google Scholar 

  • Stowe, W. C. 1980. Vertical distribution of epiphytic Denticula subtilis Grunow. Transactions of the American Microscopical Society 99:323–328.

    Google Scholar 

  • -1982. Diatoms epiphytic on the emergent grass Spartina alterniflora in a Louisiana salt marsh. Transactions of the American Microscopical Society 101:162–173.

    Google Scholar 

  • Stowe, W. C. and J. G. Gosselink. 1985. Metabolic activity of the epiphytic community associated with Spartina alterniflora. Gulf Research Reports 8:21–25.

    Google Scholar 

  • Sullivan, M. J. 1975. Diatom communities from a Delaware salt marsh. Journal of Phycology 11:384–390.

    Google Scholar 

  • -1976. Long-term effects of manipulating light intensity and nutrient enrichment on the structure of a salt marsh diatom community. Journal of Phycology 12:205–210.

    Google Scholar 

  • -1977a. Edaphic diatom communities associated with Spartina alterniflora and S. patens in New Jersey. Hydrobiologia 52:207–211.

    Article  Google Scholar 

  • -1977b. Structural characteristics of a diatom community epiphytic on Ruppia maritima. Hydrobiologia 53:81–86.

    Article  Google Scholar 

  • -1978. Diatom community structure: taxonomic and statistical analyses of a Mississippi salt marsh. Journal of Phycology 14:468–475.

    Google Scholar 

  • -1981. Effects of canopy removal and nitrogen enrichment on a Distichlis spicata-edaphic diatom complex. Estuarine, Coastal and Shelf Science 13:119–129.

    Google Scholar 

  • -1982a. Similarity of an epiphytic and edaphic diatom community associated with Spartina alterniflora. Transactions of the American Microscopical Society 101:84–90.

    Google Scholar 

  • -1982b. Distribution of edaphic diatoms in a Mississippi salt marsh: a canonical correlation analysis. Journal of Phycology 18:130–133.

    Article  Google Scholar 

  • -1999. Applied diatom studies in estuaries and shallow coastal environments. Pages 334–351 in Stoermer, E. F. and J. P. Smol, editors. The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Sullivan, M. J. and F. C. Daiber. 1975. Light, nitrogen and phosphorus limitation of edaphic algae in a Delaware salt marsh. Journal of Experimental Marine Biology and Ecology 18:79–88.

    Article  Google Scholar 

  • Sullivan, M. J. and C. A. Moncreiff 1988a. A multivariate analysis of diatom community structure and distribution in a Mississippi salt marsh. Botanica Marina 31:93–99.

    Article  Google Scholar 

  • -1988b. Primary production of edaphic algal communities in a Mississippi salt marsh. Journal of Phycology 24:49–58.

    Google Scholar 

  • -1990. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analyses. Marine Ecology Progress Series 62:149–159.

    Google Scholar 

  • Teal, J. M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43:614–624.

    Google Scholar 

  • Underwood, G. J. C., J. Phillips and K. Saunders. 1998. Distribution of estuarine benthic diatom species along salinity and nutrient gradients. European Journal of Phycology 33:173–183.

    Article  Google Scholar 

  • Van Es, F. B. 1982. Community metabolism of intertidal flats in the Ems-Dollard Estuary. Marine Biology 66:95–108.

    Article  Google Scholar 

  • Van Raalte, C. D., I. Valiela and J. M. Teal 1976a. The effect of fertilization on the species composition of salt marsh diatoms. Water Research 10:1–4.

    Google Scholar 

  • -1976b. Production of epibenthic salt marsh algae: light and nutrient limitation. Limnology and Oceanography 21:862–872.

    Google Scholar 

  • Varela, M. and E. Penas. 1985. Primary production of benthic microalgae in an intertidal sand flat of the Ria de Arosa, NW Spain. Marine Ecology Progress Series 25:111–119.

    Google Scholar 

  • Webber, E. E. 1967. Bluegreen algae from a Massachusetts salt marsh. Bulletin of the Torrey Botanical Club 94:99–106.

    Google Scholar 

  • -1968. Systematics and ecology of benthic salt marsh algae at Ipswich, Massachusetts. Dissertation, University of Massachusetts, Amherst, Massachusetts, USA.

    Google Scholar 

  • Weissburg, M. 1992. Functional analysis of fiddler crab foraging: sex-specific mechanics and constraints in Uca pugnax (Smith). Journal of Experimental Marine Biology and Ecology 156:105–124.

    Article  Google Scholar 

  • Wetzel, R. L. 1977. Carbon resources of a benthic salt marsh invertebrate Nassarius obsoletus Say (Mollusca: Nassariidae). Pages 293–308 in M. Wiley, editor. Estuarine processes. Volume 2. Academic Press, New York, New York, USA.

    Google Scholar 

  • Whitney, D. E. and W. M. Darley. 1979. A method for the determination of chlorophyll a in samples containing degradation products. Limnology and Oceanography 24:183–186.

    Article  CAS  Google Scholar 

  • -1983. Effect of light intensity upon salt marsh benthic microalgal photosynthesis. Marine Biology 75:249–252.

    Article  CAS  Google Scholar 

  • Williams, R. B. 1962. The ecology of diatom populations in a Georgia salt marsh. Thesis, Harvard University, Cambridge, Massachusetts, USA.

    Google Scholar 

  • -1964. Division rates of salt marsh diatoms in relation to salinity and cell size. Ecology 45:877–880.

    Google Scholar 

  • -1965. Unusual motility of tube-dwelling pennate diatoms. Journal of Phycology 1:145–146.

    Google Scholar 

  • Zedler, J. B. 1980. Algal mat productivity: comparisons in a salt marsh. Estuaries 3:122–131.

    Google Scholar 

  • -1982. Salt marsh algal mat composition: spatial and temporal comparisons. Bulletin of the Southern California Academy of Sciences 81:41–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sullivan, M.J., Currin, C.A. (2002). Community Structure and Functional Dynamics of Benthic Microalgae in Salt Marshes. In: Weinstein, M.P., Kreeger, D.A. (eds) Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht. https://doi.org/10.1007/0-306-47534-0_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47534-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6019-3

  • Online ISBN: 978-0-306-47534-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics