Skip to main content

Trophic Complexity Between Producers and Invertebrate Consumers in Salt Marshes

  • Chapter
Concepts and Controversies in Tidal Marsh Ecology

Abstract

Salt marshes on the Atlantic coast of North America are characterized by having a high biomass of smooth cordgrass, Spartina alterniflora. Because of the refractory nature of the lignocellulosic structure of this angiosperm, invertebrates utilize C from these plants with very low efficiency, if at all. This is true for both living cordgrass and post-senescent plant detritus. To balance their C demands, invertebrate consumers living in salt marshes must utilize a wide variety of other resources, including microheterotrophs (bacteria and bacterivorous flagellates) either associated with detritus or free in the water column, fungi colonizing decaying vascular plants, surface-associated algae (e.g., microphytobenthic diatoms and cyanobacteria, epiphytes, surface film algae) and phytoplankton. This high degree of trophic complexity is likely to be an important source of community stability. As an example, we estimate that ribbed mussels, Geukensia demissa, in a Delaware marsh must rely on a variety of different food resources since no single food type can meet their nutritional demands for either C or N. To balance their C demands, mussels appear to rely mainly on microheterotrophs, followed by phytoplankton > microphytobenthos > cellulosic detritus. Non-detrital foods are even more important for maintaining positive N balance in G. demissa. Previous and emerging evidence from other studies suggests that other important marsh consumers have a similar general diet. Although cordgrass may dominate overall rates of primary production and detritus from cordgrass contributes significantly to secondary production, we challenge the paradigm that salt marshes have a “detritus-based food web.” Further research is needed to deduce the importance of microphytobenthos and microheterotrophs as sources of C and N for dominant animal consumers in these marsh systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature Cited

  • Alber, M. and I. Valiela. 1994. Assimilation of organic aggregates by marine mussels. Marine Biology 121:259–265.

    Article  CAS  Google Scholar 

  • Alon, N.C. and S.E. Stancyk. 1982. Variation in life-history patterns of the grass shrimp Palaemonetes pugio, in two South Carolina estuarine systems. Marine Biology 68:265–276.

    Article  Google Scholar 

  • Asmus, H., R.N. Asmus and G. Frances Zubillaga. 1995. Do mussel beds intensify the phosphorus exchange between sediment and tidal waters? Ophelia 41:37–55.

    Google Scholar 

  • Barnes, R.S.K. 1989. Marine animals of Blakeney Point and Scolt Head Island. Pages 67–75 in H. Allison and J.P. Morley, editors. Blakeney Point and Scolt Head Island. National Trust, Norfolk, England.

    Google Scholar 

  • Bayne, B.L. and R.C. Newell. 1983. Physiological energetics of marine molluscs. Pages 407–515 in A.S.M. Saleuddin and K.M Willow, editors. The mollusca. Volume 4, Part 1. Academic Press, New York, New York, USA.

    Google Scholar 

  • Bell, S.S., M.C. Watzin and B.C. Coull. 1978. Biogenic structure and its effect on the spatial heterogeneity of the meiofauna of a salt marsh. Journal of Experimental Marine Biology and Ecology 35:99–107.

    Article  Google Scholar 

  • Benner, R., A.E. MacCubbin and R.E. Hodson. 1984. Preparation, characterization and microbial degradation of specifically radiolabeled [su14C] lignocellulose from marine and freshwater macrophytes. Applied Environmental Microbiology 47:381–389.

    CAS  Google Scholar 

  • Berg, J.A. and R.I.E. Newell. 1986. Temporal and spatial variations in the composition of seston available to the suspension-feeder Crassostrea virginica. Estuarine, Coastal and Shelf Science 23:375–386.

    CAS  Google Scholar 

  • Bertness, M.D. 1984. Ribbed mussels and Spartina alterniflora production in a New England salt marsh. Ecology 65:1794–1807.

    Google Scholar 

  • Bertness, M.D. 1987. Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh. Ecology 66:1042–1055.

    Google Scholar 

  • Bertness, M.D. and E. Grosholz. 1985. Population dynamics of the ribbed mussel, Geukensia demissa: the costs and benefits of an aggregated distribution. Oecologia 67:192–204.

    Article  Google Scholar 

  • Borrero, F.J. 1987. Tidal height and gametogenesis: reproductive variation among populations of Geukensia demissa. Biological Bulletin 173:160–168.

    Google Scholar 

  • Cahoon, L.B., G.R. Beretich, Jr., C.J. Thomas and A.M. McDonald. 1993. Benthic microalgal production at Stellwagen Bank, Massachusetts Bay, USA. Marine Ecology Progress Series 102:179–185.

    Google Scholar 

  • Cahoon, L.B. and J.E. Cooke. 1992. Benthic microalgal production in Onslow Bay, North Carolina, USA. Marine Ecology Progress Series 84:185–196.

    Google Scholar 

  • Charles, F. and R.I.E. Newell. 1997. Digestive physiology of the ribbed mussel Geukensia demissa (Dillwyn) held at different tidal heights. Journal of Experimental Marine Biology and Ecology 209:201–213.

    Article  Google Scholar 

  • Christian, R.R., R.B. Hansen, J.R. Hall and W.J. Wiebe. 1981. Aerobic microbes and meiofauna. Pages 69–85 in L.R. Pomeroy and R.G. Wiegert, editors. The ecology of a salt marsh. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Cloern, J.E., T.M. Powell and L.M. Huzzey. 1989. Spatial and temporal variability in South San Francisco Bay (USA). II. Temporal changes in salinity, resuspended sediments and phytoplankton biomass and productivity over tidal time scales. Estuarine, Coastal and Shelf Science 28:599–613.

    Article  CAS  Google Scholar 

  • Coffin, R.B., B. Fry, B.J. Peterson and R.T. Wright. 1989. Carbon isotopic compositions of estuarine bacteria. Limnology and Oceanography 34:1305–1310.

    CAS  Google Scholar 

  • Colijn, F. and K. A. Dijkema. 1981. Species composition of benthic diatoms and distribution of chlorophyll a on an intertidal flat in the Dutch Wadden Sea. Marine Ecology Progress Series 4:9–21.

    Google Scholar 

  • Conner, M. S. and R. K. Edgar. 1982. Selective grazing by the mud snail Ilyanassa obsoleta. Oecologia 53:271–275.

    Google Scholar 

  • Coull, B.C. and S.S. Bell. 1979. Perspectives of marine meiofaunal ecology. Pages 189–216 in R.J. Livingston, editor. Ecological processes in coastal and marine systems, Volume 10. Plenum Press, New York, New York, USA.

    Google Scholar 

  • Crosby, M.P., C.J. Langdon and R.I.E Newell. 1989. The importance of refractory plant material to the carbon budget of the oyster, Crassostrea virginica (Gmelin). Marine Biology 100:343–352.

    Article  Google Scholar 

  • Crosby, M.P., R.I.E. Newell and C.J. Langdon. 1990. Bacterial mediation in the utilization of carbon and nitrogen from detrital complexes by the oyster, Crassostrea virginica (Gmelin). Limnology and Oceanography 35:625–639.

    CAS  Google Scholar 

  • Currin, C.A., S.Y. Newell and H.W. Paerl. 1995. The role of standing Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Marine Ecology Progress Series 121:99–116.

    Google Scholar 

  • Curtis, L.A. and L.E. Hurd. 1981. Nutrient procurement strategy of a deposit-feeding estuarine neogastropod, Ilyanassa obsoleta. Estuarine, Coastal and Shelf Science 13:277–285.

    Google Scholar 

  • Daiber, F. C. 1982. Animals of the tidal marsh. Van Nostrand Reinhold Co., New York, New York, USA.

    Google Scholar 

  • Dame, R. F. 1996. Ecology of marine bivalves: an ecosystem approach. CRC Press, New York, New York, USA.

    Google Scholar 

  • Darnell, R. M. 1967. Organic detritus in relation to the estuarine ecosystem. Pages 376–382 in G.H. Lauff, editor. Estuaries. AAAS Publ. 83, Washington.

    Google Scholar 

  • de Jonge, V.N. and J.E.E. van Beusekom. 1995. Wind-and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnology and Oceanography 40:766–778.

    Google Scholar 

  • Demers, S., J.C. Therriault, E. Bourget and A. Bah. 1987. Resuspension in the shallow sublittoral zone of a macrotidal estuarine environment: wind influence. Limnology and Oceanography 32:327–339.

    Article  CAS  Google Scholar 

  • Fell, P.E., N.C. Olmstead, E. Carlson, W. Jacob, D. Hitchcock and G. Silber. 1982. Distribution and abundance of macroinvertebrates on certain Connecticut tidal marshes, with emphasis on dominant molluscs. Estuaries 5:234–239.

    Google Scholar 

  • Fenchel, T. 1972. Aspects of decomposer food chains in marine benthos. Verhandlungen. Deutsche Zoologische Gesellschaft 65:14–22.

    Google Scholar 

  • Fenchel, T. 1982. Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Marine Ecology Progress Series 8:211–223.

    Google Scholar 

  • Franz, D.R. 1993. Allometry of shell and body weight in relation to shore level in the intertidal bivalve Geukensia demissa (Bivalvia: Mytilidae). Journal of Experimental Marine Biology and Ecology 174:193–207.

    Article  Google Scholar 

  • Franz, D.R. 1996. Size and age at first reproduction of the ribbed mussel Geukensia demissa in relation to shore level in a New York salt marsh. Journal of Experimental Marine Biology and Ecology 205:1–13.

    Article  Google Scholar 

  • Franz, D.R. 1997. Resource allocation in the intertidal salt-marsh mussel Geukensia demissa in relation to shore level. Estuaries 20:134–148.

    Google Scholar 

  • Gallagher, J.L. 1975. The significance of the surface film in salt marsh plankton metabolism. Limnology and Oceanography 29:120–123.

    Google Scholar 

  • Gallagher, J.L. and F.C. Daiber. 1974. Primary production of edaphic algal communities in a Delaware salt marsh. Limnology and Oceanography 19:390–395.

    Google Scholar 

  • Gallagher, J. L., W. J. Pfeiffer and L. R. Pomeroy. 1976. Leaching and microbial utilization of dissolved organic carbon from leaves of Spartina alterniflora. Estuarine, Coastal and Shelf Science 4:467–471.

    Google Scholar 

  • Galvao, H.M. and A.T. Fritz. 1991. Microbial trophodynamics in a salt-marsh. Marine Microbial Food Webs 5:13–26.

    Google Scholar 

  • Gillmor, R. B. 1982. Assessment of intertidalgrowth and capacity adaptations in suspension-feeding bivalves. Marine Biology 68:277–286.

    Article  Google Scholar 

  • Haines, E. B. 1979. Interactions between Georgia salt marshes and coastal waters: a changing paradigm. Pages 35–46 in R.J. Livingston, editor. Ecological processes in coastal and marine systems, Volume 10. Plenum Press, New York, New York, USA.

    Google Scholar 

  • Haines, E.B. and R.B. Hanson. 1979. Experimental degradation of detritus made from the salt marsh plants Spartina alterniflora, Salicornia virginica and Juncus roemerianus. Journal of Experimental Marine Biology and Ecology 40:27–40.

    Article  CAS  Google Scholar 

  • Haines, E.B. and C.L. Montague. 1979. Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology 60:48–56.

    Google Scholar 

  • Hastings, A. 1988. Food web theory and stability. Ecology 69:1665–1668.

    Google Scholar 

  • Hawkins, A.J.S. and B.L. Bayne. 1985. Seasonal variation in the relative utilization of carbon and nitrogen by the mussel, Mytilus edulis: budgets, conversion efficiencies and maintenance requirements. Marine Ecology Progress Series 25:181–188.

    CAS  Google Scholar 

  • -1992. Physiological interrelations and the regulation of production. Pages 171–222 in E. Gosling, editor. The Mussel mytilus: ecology, physiology, genetics and culture. Elsevier Science Publishers, New York, New York, USA.

    Google Scholar 

  • Heard, R.W. 1982. Guide to common tidal marsh invertebrates of the Northwestern Gulf of Mexico. MS-AL Sea Grant Consortium Publication No. MASGP-79-004.82 Ocean Springs, Mississippi, USA.

    Google Scholar 

  • Heydemann, B. 1981. Ecology of the arthropods of the lower salt marsh. Pages 35–57 in W.K.R.E. Wingerden and W.J. Wolff, editors. Terrestrial and freshwater fauna of the Wadden sea area, Balkema, Rotterdam, The Netherlands.

    Google Scholar 

  • Huang, S. C. 2000. A comparison of temporal and spatial variation in nutritional resources and the seasonal nutritional demands of the marsh mussel, Geukensia demissa. Dissertation, University of Maryland, College Park, Maryland, USA.

    Google Scholar 

  • Hubbard, M.D. 1997. Aquatic insects of northern Florida’s Gulf Coast tidal marshes. Pages 339–345 in C.L. Coultas and Y. Hsieh, editors. Ecology and management of tidal marshes: a model from the Gulf of Mexico. St. Lucie Press, Delray Beach, Florida, USA.

    Google Scholar 

  • Jordan, T.E. and I. Valiela. 1982. A nitrogen budget of the ribbed mussel, Geukensia demissa and its significance in nitrogen flow in a New England salt marsh. Limnology and Oceanography 27:75–90

    CAS  Google Scholar 

  • Kemp, P.F., S.Y. Newell and C. Krambeck. 1990. Effects of filter-feeding by the ribbed mussel Geukensia demissa on the water-column microbiota of a Spartina alterniflora saltmarsh. Marine Ecology Progress Series 59:119–131.

    Google Scholar 

  • Kiel, R.G. and D.L. Kirchman. 1991. Dissolved combined amino acids in marine waters as determined by a vapor-phase hydrolysis method. Marine Chemistry 33:243–259.

    Google Scholar 

  • Kirchman, D., B. Peterson and D. Juers. 1984. Bacterial growth and tidal variation in bacterial abundance in the Great Sippewissett Salt Marsh. Marine Ecology Progress Series 19:247–259.

    Google Scholar 

  • Kraeuter, J.N. and P.L. Wolf. 1974. The relationship of marine macroinvertebrates to salt marsh plants. Pages 449–462 in R. J. Reimold and W.H. Queen, editors. Ecology of halophytes. Academic Press, New York, New York, USA.

    Google Scholar 

  • Kreeger, D.A. 1986. Utilization of refractory cellulosic material derived from Spartina alterniflora by the ribbed mussel Geukensia demissa. Thesis, University of Delaware, Lewes, Delaware, USA.

    Google Scholar 

  • Kreeger, D.A. 1993. Seasonal patterns in the utilization of dietary protein by the mussel, Mytilus trossulus. Marine Ecology Progress Series 95:215–232.

    Article  Google Scholar 

  • Kreeger, D. A., A.J.S. Hawkins and B.L. Bayne. 1996. Use of dual-labeled microcapsules to discern the anabolic and catabolic fate of dietary protein in suspension-feeders. Limnology and Oceanography 41:208–215.

    CAS  Google Scholar 

  • Kreeger, D.A., A.J.S. Hawkins, B.L. Bayne and D.L. Lowe. 1995. Seasonal variation in the relative utilization of dietary carbohydrate, protein-carbon and protein-nitrogen by Mytilus edulis (L.) Marine Ecology Progress Series 126:177–184.

    CAS  Google Scholar 

  • Kreeger, D.A. and C.J. Langdon. 1993. Effect of dietary protein content on growth of juvenile mussels, Mytilus trossulus (Gould 1850). Biological Bulletin 185:123–139.

    Google Scholar 

  • Kreeger, D.A., C.J. Langdon and R.I.E. Newell. 1988. Utilization of refractory cellulosic carbon derived from Spartina alterniflora by the ribbed mussel Geukensia demissa. Marine Ecology Progress Series 42:171–179.

    CAS  Google Scholar 

  • Kreeger, D.A. and R.I.E. Newell. 1996. Ingestion and assimilation of carbon from cellulolytic bacteria and heterotrophic flagellates by the mussels Geukensia demissa and Mytilus edulis (Bivalvia, Mollusca). Aquatic Microbial Ecology 11:205–214.

    Google Scholar 

  • Kreeger, D.A., R.I.E. Newell and C.J. Langdon. 1990. Effect of tidal exposure on utilization of dietary lignocellulose by the ribbed mussel Geukensia demissa (Dillwyn) (Mollusca: Bivalvia). Journal of Experimental Marine Biology and Ecology 144:85–100.

    Article  CAS  Google Scholar 

  • Kruczynski, W.L. and B.F. Ruth. 1997. Fishes and invertebrates. Pages 131–173 in C.L. Coultas and Y. Hsieh, editors. Ecology and management of tidal marshes: a model from the Gulf of Mexico. St. Lucie Press, Delray Beach, Florida, USA.

    Google Scholar 

  • Kuenzler, E. J. 1961a. Structure and energy flow of a mussel population in a Georgia salt marsh. Limnology and Oceanography 6:191–204.

    Google Scholar 

  • -1961b. Phosphorus budget of a mussel population. Limnology and Oceanography 6:400–415.

    CAS  Google Scholar 

  • Langdon, C.J. and R.I.E. Newell. 1990. Utilization of detritus and bacteria as food sources by two bivalve suspension-feeders, the oyster Crassostrea virginica and the mussel Geukensia demissa. Marine Ecology Progress Series 58:299–310.

    Google Scholar 

  • -1996. Digestion and nutrition of larvae and adults. Pages 231–270 in V.S. Kennedy, R.I.E. Newell and A. Eble, editors. The eastern oyster, Crassostrea virginica. Maryland Sea Grant Publication, College Park, Maryland, USA.

    Google Scholar 

  • Le Gall, S., M.B. Hassen and P. Le Gall. 1997. Ingestion of a bacterivorous ciliate by the oyster Crassostrea gigas: protozoa as a trophic link between picoplankton and benthic suspension-feeders. Marine Ecology Progress Series 152:301–306.

    Google Scholar 

  • Leatham, W., P. Kinner and D. Maurer. 1976. Northern range extension of the Florida marsh clam Cyrenoidea floridana (Superfamily Cyrenoidacea). Nautilus 90:93.

    Google Scholar 

  • Lent, C.M. 1967. Effects and adaptive significance of air-gaping by the ribbed mussel, Modiolus (Arcuatula) demissus (Dillwyn). Dissertation, University of. Delaware, Newark, Delaware, USA.

    Google Scholar 

  • -1969. Adaptations of the ribbed mussel, Modiolis demissus (Dillwyn), to the intertidal habitat. American Zoologist 9:283–292.

    Google Scholar 

  • Levin, L.A., D. Talley and G. Thayer. 1996. Succession of macrobenthos in a created salt marsh. Marine Ecology Progress Series 141:67–82.

    Google Scholar 

  • Lin, J. 1989. Influence of location in the marsh on survivorship of ribbed mussels. Marine Ecology Progress Series 56:105–110.

    Google Scholar 

  • Linley, E.A.S. and R.C. Newell. 1984. Estimates of bacterial growth yields based on plant detritus. Bulletin of Marine Science 35:409–425.

    Google Scholar 

  • Litaker, W., C.S. Duke, B.E. Kenney and J. Ramus. 1993. Short-term variability and phytoplankton abundance in a shallow tidal estuary. II. Spring and fall. Marine Ecology Progress Series 94:141–154.

    Google Scholar 

  • Lopez, G.R. and L.H. Kofoed. 1980. Epipsammic browsing and deposit feeding in mud snails (Hydrobiidae). Journal of Marine Research 38:585–599.

    Google Scholar 

  • Lopez, G.R. and J.S. Levinton. 1987. Ecology of deposit feeding animals in marine sediments. Quarterly Review Biology 62:235–260.

    Google Scholar 

  • Lopez-Figueroa, F. and F.X. Niell. 1987. Feeding behaviour of Hydrobia ulvae (Pennant) in microcosms. Journal of Experimental Marine Biology and Ecology 114:153–167.

    Google Scholar 

  • Lucas, M.I., R.C. Newell, S.E. Shumway, L.J. Seiderer and R. Bally. 1987. Particle clearance and yield in relation to bacterioplankton and suspended particulate availability in estuarine and open coast populations of the mussel Mytilus edulis. Marine Ecology Progress Series 36:215–224.

    Google Scholar 

  • MacArthur, R.H. 1955. Fluctuations of animal populations and a measure of community stability. Ecology 36:533–536.

    Google Scholar 

  • MacCubbin, A.E. and R.E. Hodson. 1980. Mineralization of detrital lignocelluloses by salt marsh sediment microflora. Applied Environmental Microbiology 40:735–740.

    CAS  Google Scholar 

  • MacIntyre, H.L. and J.J. Cullen. 1995. Fine-scale vertical resolution of chlorophyll and photosynthetic parameters in shallow-water benthos. Marine Ecology Progress Series 122:227–237.

    CAS  Google Scholar 

  • MacIntyre, H.L. and J.J. Cullen. 1996. Primary production by suspended and benthic microalgae in a turbid estuary: time scales of variability in San Antonio Bay, Texas. Marine Ecology Progress Series 145:245–268.

    Google Scholar 

  • MacIntyre, H.L., R.J. Geider and D.C. Miller. 1996. Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries. 19:186–201.

    Google Scholar 

  • Mann, K,H. 1972. Macrophyte production and detritus food chains in coastal waters. Memorie Istituto Italiano di Idrobiologia 29 Suppl:353–383.

    Google Scholar 

  • Marples, T.G. 1966. A radionuclide study of arthropod food chains in a Spartina salt marsh estuary. Ecology 47:270–277.

    Google Scholar 

  • Matthews, S., M.I. Lucas, J.M.E Stenton-Dozey and A.C. Brown. 1989. Clearance and yield of bacterioplankton and particulates for two suspension-feeding infaunal bivalves, Donax serra Roding and Mactra lilacea Lam. Journal of Experimental Marine Biology and Ecology 125:219–234.

    Article  Google Scholar 

  • May, R.M. 1981. Patterns in multi-species communities. Pages 197–227 in R. M. May, editor. Theoretical ecology. Blackwell, Oxford, England.

    Google Scholar 

  • Menge, B.A., B. Daley and P.A. Wheeler. 1996. Control of interaction strength in marine benthic communities. Pages 258–274 in G.A. Polis and K.O. Winemiller, editors. Food webs: integration of patterns and dynamics. Chapman and Hall, New York, New York, USA.

    Google Scholar 

  • Miller, D.C., R.J. Geider and H.L. MacIntyre. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries 19:202–212.

    Google Scholar 

  • Montagnes, D.J.S., J.A. Berges, P.J. Harrison and F.J.R. Taylor. 1994. Estimating carbon, nitrogen, protein and chlorophyll a from volume in marine phytoplankton. Limnology and Oceanography 39:1044–1060.

    CAS  Google Scholar 

  • Montague, C.L. 1980. A natural history of the temperate western Atlantic fiddler crabs (Genus Uca) with reference to their impact on the salt marsh. Contributions in Marine Science 23:25–55.

    CAS  Google Scholar 

  • Montague, C.L., S.M. Bunker, E.B. Haines, M.L. Pace and R.L. Wetzel. 1981. Aquatic macroconsumers. Pages 69–85 in L.R. Pomeroy and R.G. Wiegert, editors. The Ecology of a salt marsh. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Muir, D.G., L.J. Seiderer, C.L. Davis, S.J. Painting and F.T. Robb. 1986. Filtration, lysis and absorption of bacteria by mussels Choromytilus meridionalis collected under upwelling and downwelling conditions. South African Journal of Marine Science 4:169–179.

    Google Scholar 

  • Newell, R.C. 1965. The role of detritus in the nutrition of two marine deposit-feeders, the prosobranch, Hydrobia ulvae and the bivalve, Macoma balthica. Proceedings of the Zoological Society of London 144:25–45.

    Google Scholar 

  • Newell, R.C. and J.G. Field 1983a. The contribution of bacteria and detritus to carbon and nitrogen flow in a benthic community. Marine Biology Letters 4:23–36.

    Google Scholar 

  • -1983b. Relative flux of carbon and nitrogen in a kelp-dominated ecosystem. Marine Biology Letters 4:259–257.

    Google Scholar 

  • Newell, R.I.E., N. Marshall, A. Sasekumar and V.C. Chong. 1995. Relative importance of benthic microalgae, phytoplankton and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia. Marine Biology 123:595–606.

    Article  Google Scholar 

  • Newell, R.I.E. and C.J. Langdon. 1996. Mechanisms and Physiology of Larval and Adult Feeding. Pages 185–230 in V.S. Kennedy, R.I.E. Newell and A. Eble, editors. The Eastern oyster, Crassostrea virginica. Maryland Sea Grant Publication, College Park, Maryland, USA.

    Google Scholar 

  • Newell, S.Y. and F. Bärlocher. 1993. Removal of fungal and total organic matter from decaying cordgrass leaves by shredder snails. Journal of Experimental Marine Biology and Ecology 171:39–49.

    Google Scholar 

  • Newell, S.Y., R. D. Fallon, R.M. Cal Rodriguez and L.G. Groene. 1985. Influence of rain, tidal wetting and relative humidity on release of carbon dioxide by standing-dead salt-marsh plants. Oecologia 68:73–79.

    Article  Google Scholar 

  • Newell, S.Y. and C. Krambeck. 1995. Responses of bacterioplankton to tidal inundations of a saltmarsh in a flume and adjacent mussel enclosures. Journal of Experimental Marine Biology and Ecology 190:79–95.

    Article  Google Scholar 

  • Nixon, S.W. and C.A. Oviatt. 1973. Ecology of a New England salt marsh. Ecological Monographs 43:463–498.

    Google Scholar 

  • Odum, E.P. 1980. The status of three ecosystem-level hypotheses regarding salt marsh estuaries: tidal subsidy, outwelling and detritus-based food chains. Pages 485–495 in V.S. Kennedy, editor. Estuarine perspectives, Academic Press, New York.

    Google Scholar 

  • Pace, M.L., S. Shimmel and W.M. Darley. 1979. The effect of grazing by a gastropod, Nassaius obsoletus, on the benthic microbial community of a salt marsh mudflat. Estuarine and Coastal Marine Science 9:121–134.

    Article  CAS  Google Scholar 

  • Paine, R.T. 1974. Intertidal community structure: experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia 15:93–120.

    Article  Google Scholar 

  • Paine, R.T. 1988. Food webs: road maps to interactions or grist for theoretical developing problems. Ecology 90:1648–1654.

    Google Scholar 

  • Pennings, S.C., T.H. Carefoot, E.L. Siska, M.E. Chase and T.A. Page. 1998. Feeding preferences of a generalist salt-marsh crab: relative importance of multiple plant traits. Ecology 79: 1968–1979.

    Google Scholar 

  • Penry, D.L. and P.A. Jumars. 1986. Chemical reactor analysis and optimal digestion. BioScience 36:310–315.

    CAS  Google Scholar 

  • Persson, L., J. Bengtsson, B.A. Menge and M.E. Power. 1996. Productivity and consumer regulation-concepts, patterns and mechanisms. Pages 396–434 in G.A. Polis and K.O. Winemiller, editors. Food webs: integration of patterns and dynamics. Chapman and Hall, New York, New York, USA.

    Google Scholar 

  • Peterson, B.J. and R.W. Howarth. 1987. Sulfur, carbon and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island. Limnology and Oceanography 32:1195–1213.

    CAS  Google Scholar 

  • Peterson, B.J., R.W. Howarth and R.H. Garritt. 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227:1361–1363.

    PubMed  Google Scholar 

  • Peterson, B.J., R.W. Howarth and R.H. Garritt. 1986. Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow. Ecology 67:865–874.

    CAS  Google Scholar 

  • Pfeiffer, W.J. and R.G. Wiegert. 1981. Grazers on Spartina and their predators. Pages 87–112 in L.R. Pomeroy and R.G. Wiegert, editors. The ecology of a salt marsh. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Pimm, S.L. 1982. Food webs. Chapman and Hall, New York, New York, USA.

    Google Scholar 

  • Pimm, S.L. 1984. The complexity and stability of ecosystems. Nature 307:321–326.

    Article  Google Scholar 

  • Pimm, S.L. and J.H. Lawton. 1978. On feeding on more than one trophic level. Nature 275:542–544.

    Article  Google Scholar 

  • Pimm, S.L., J.H. Lawton and E.G. Cohen. 1991. Food web patterns and their consequences. Nature 350:669–674.

    Google Scholar 

  • Pinckney J., R. Papa and R. Zingmark. 1994. Comparison of high-performance liquid chromatographic, spectrophotometric and fluorometric methods for determining chlorophyll a concentrations in estuarine sediments. Journal of Microbiological Methods 19:59–66.

    Article  CAS  Google Scholar 

  • Pinckney, J. and R.G. Zingmark. 1993. Photophysiological responses of intertidal benthic microalgal communities to in situ light environments: methodological considerations. Limnology and Oceanography 38:1373–1383.

    Google Scholar 

  • Pomeroy, L.R. 1959. Algal productivity in salt marshes of Georgia. Limnology and Oceanography 4:386–397.

    Google Scholar 

  • -1974. The ocean’s food web, a changing paradigm. Bioscience 24:499–504.

    Google Scholar 

  • Pomeroy, L.R. and J. Imberger. 1981. The physical and chemical environment. Pages 21–36 in L.R. Pomeroy and R.G. Wiegert, editors. The ecology of a salt marsh. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Pomeroy, L.R., W.M. Darley, E.L. Dunn, J.L. Gallagher, E.B. Haines and D.M. Whitney. 1981. Primary production. Pages 39–67 in L.R. Pomeroy and R.G. Wiegert, editors. The ecology of a salt marsh. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Porter, K.G. 1996. Integrating the microbial loop and the classic food chain into a realistic planktonic food web. Pages 51–59 in G.A. Polis and K.O. Winemiller, editors. Food webs: integration of patterns and dynamics. Chapman and Hall, New York, New York, USA.

    Google Scholar 

  • Powell, T.M., J.E. Cloern and L.M. Huzzey. 1989. Spatial and temporal variability in South San Francisco Bay (USA). I. Horizontal distributions of salinity, suspended sediments and phytoplankton biomass and productivity. Estuarine and Coastal Shelf Science 28:583–597.

    CAS  Google Scholar 

  • Rey, J.R. and E.D. McCoy. 1997. Terrestrial arthropods. Pages 175–208 in C.L. Coultas and Y. Hsieh, editors. Ecology and Management of Tidal Marshes: A Model from the Gulf of Mexico. St. Lucie Press, Delray Beach, Florida, USA.

    Google Scholar 

  • Rice, D.L. 1982. The detritus nitrogen problem: new observations and perspectives from organic geochemistry. Marine Ecology Progress Series 9:153–162.

    CAS  Google Scholar 

  • Riisgård, H.U. 1988. Efficiency of particle retention and filtration rate in 6 species of northeast American bivalves. Marine Ecology Progress Series 45:217–223.

    Google Scholar 

  • Roman, C.T. and F.C. Daiber. 1989. Organic carbon flux through a Delaware Bay salt marsh: tidal exchange, particle size distribution and storms. Marine Ecology Progress Series 54:149–156.

    CAS  Google Scholar 

  • Rutledge, P.A. and J.W. Fleeger. 1993. Abundance and seasonality of meiofauna, including harpacticoid copepod species, associated with stems of the salt-marsh cord grass, Spartina alterniflora. Estuaries 16:760–768.

    Google Scholar 

  • Seed, R. and T.H. Suchanek. 1992. Population and community ecology of Mytilus. Pages 87–169 in E. Gosling, editor. The mussel Mytilus: ecology, physiology, genetics and culture. Elsevier Science Publishers, New York, New York, USA.

    Google Scholar 

  • Seiderer, L.J., C.L. Davis, F.T. Robb and R.C. Newell. 1984. Utilization of bacteria as nitrogen resource by kelp-bed mussel Choromytilus meridionalis. Marine Ecology Progress Series 15:109–116.

    CAS  Google Scholar 

  • Shaffer, G.P. and P. Cahoon. 1987. Extracting information from ecological data containing high spatial and temporal variability: benthic microfloral production. International Journal of Genetics and Systematics 13:107–123.

    Google Scholar 

  • Shirley, M.A., A.H. Hines and T.G. Wolcott. 1990. Adaptive significance of habitat selection by molting adult blue crabs Callinectes sapidus (Rathburn) within a subestuary of central Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 140:107–119.

    Article  Google Scholar 

  • Smalley, A.E. 1959. The role of two invertebrate populations, Littorina irrorata and Orchelimum fidicinium, in the energy flow of a salt marsh ecosystem. Dissertation, University of Georgia, Athens, Georgia, USA.

    Google Scholar 

  • Smalley, A.E. 1960. Energy flow of a salt marsh grasshopper population. Ecology 41:672–677.

    Google Scholar 

  • Soniat, T.M., S.M. Ray and L.M. Jeffrey. 1984. Components of the seston and possible available food for oysters in Galveston Bay, Texas. Contributions in Marine Science 27:127–141.

    Google Scholar 

  • Stephens, G.C. 1985. Uptake of amino acids by marine invertebrates. Pages 280–291 in R. Gilles and M. Gilles-Bailien, editors, comparative physiology and biochemistry: current topics and trends. Volume B: Transport, Iono and Osmoregulation. Springer, Berlin, Germany.

    Google Scholar 

  • Stiven, A.E. and S.A. Gardner. 1992. Population processes in the ribbed mussel, Geukensia demissa (Dillwyn), in a North Carolina salt marsh tidal gradient: Spatial pattern, predation, growth and mortality. Journal of Experimental Marine Biology and Ecology 160:81–102.

    Article  Google Scholar 

  • Subrahmanyam, C.B., W.L. Kruczynski and S.H. Drake. 1976. Studies on the animal communities of two north Florida salt marshes. Part II. Macroinvertebrate communities. Bulletin of Marine Science 26:172–195.

    Google Scholar 

  • Sullivan, M.J. 1975. Diatom communities from a Delaware salt marsh. Journal of Phycology 11:384–390.

    Google Scholar 

  • Sullivan, M.J. and C.A. Moncreiff. 1988. Primary production of edaphic algal communities in a Mississippi salt marsh. Journal of Phycology 24:49–58.

    Google Scholar 

  • -1990. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analyses. Marine Ecology Progress Series 62:149–159.

    Google Scholar 

  • Taghon, G.L. and P.A. Jumars. 1984. Variable ingestion rate and its role in optimal foraging behavior of marine deposit-feeders. Ecology 65:549–558.

    Google Scholar 

  • Teal, J.M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43:614–624.

    Google Scholar 

  • Teal, J.M. and W. Wieser. 1966. The distribution and ecology of nematodes in a Georgia salt marsh. Limnology and Oceanography 6:217–222.

    Google Scholar 

  • Tenore, K.R. 1975. Detritus utilization by the polychaete, Capitella capitata. Journal of Marine Research 33:261–274.

    Google Scholar 

  • Tenore, K.R. 1977. Growth of the polychaete, Capitella capitata cultured in different levels of detritus derived from various sources. Limnology and Oceanography 22:936–941.

    Google Scholar 

  • Tenore, K.R. and R.B. Hanson. 1980. Availability of detritus of different types and ages to a polychaete macroconsumer, Capitella capitata. Limnology and Oceanography 25:553–558.

    Google Scholar 

  • Threlkeld, S.T. 1994. Benthic-pelagic interactions in shallow water columns: an experimentalist’s perspective. Hydrobiologia 275/276: 293–300.

    Article  Google Scholar 

  • Valiela, I. and J.M. Teal. 1979. The nitrogen budget of a salt marsh ecosystem. Nature 280:652–656.

    CAS  Google Scholar 

  • Valiela, I., J.M. Teal, S.D. Allen, R. Van Etten, D. Goehringer and S. Volkmann. 1985. Decomposition in salt marsh ecosystems: the phases and major factors affecting the disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology 89:29–54.

    Article  CAS  Google Scholar 

  • Van Valkenberg, S.D., J.K. Jones and D.R. Heinle. 1978. A comparison by size class and volume of detritus versus phytoplankton in Chesapeake Bay. Estuarine, Coastal and Shelf Science 6:569–582.

    Google Scholar 

  • Webb, K.L. and F. L. Chu. 1982. Phytoplankton as a food source for bivalve larvae. Pages 272–291 in G.D. Pruder, C.J. Langdon and D.E. Conklin, editors. Second international conference on aquaculture nutrition: biochemical and physiological approaches to shellfish nutrition. Louisiana State University, Baton Rouge, Louisian, USA.

    Google Scholar 

  • Welsh, B.L. 1975. The role of the grass shrimp, Palaemonetes pugio, in the Galveston Bay estuarine system. Contributions in Marine Science 12:54–79.

    Google Scholar 

  • Werner, I. and J.T. Hollibaugh. 1993. Potamocorbula amurensis: comparison of clearance rates and assimilation efficiencies for phytoplankton and bacterioplankton. Limnology and Oceanography 38:949–964.

    Article  Google Scholar 

  • West, D.L. and A.H. Williams. 1986. Predation by Callinectes sapidus (Rathbun) within Spartina alterniflora (Loisel) marshes. Journal of Experimental Marine Biology and Ecology 100:75–95.

    Article  Google Scholar 

  • Wetzel, R.L. 1976. Carbon resources of a benthic salt marsh invertebrate, Nassarius obsoletus Say (Mollusca: Nassariidae). Pages 293–308 in Estuarine Processes, Volume 2. Academic Press, New York, New York, USA.

    Google Scholar 

  • Widdows, J., P. Fieth and C.M. Worrall. 1979. Relationships between seston, available food and feeding activity in the common mussel, Mytilus edulis. Marine Biology 50:195–207.

    Article  CAS  Google Scholar 

  • Wiegert, R.G. and L.R. Pomeroy. 1981. The salt marsh ecosystem: a synthesis. Pages 219–230 in L.R. Pomeroy and R.G. Wiegert, editors. The Ecology of a Salt Marsh. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Williams, R.B. 1962. The ecology of diatom populations in a Georgia salt marsh. Dissertation, Harvard University, Cambridge, Massachusetts, USA

    Google Scholar 

  • Williams, P. 1981. Detritus utilization by Mytilus edulis. Estuarine, Coastal and Shelf Science 12:739–746.

    Google Scholar 

  • Wilson, J.O., R. Buchsbaum, I. Valiela and T. Swain. 1986. Decomposition in salt marsh ecosystems: phenolic dynamics during decay of litter of Spartina alterniflora. Marine Ecology Progress Series 29:177–187.

    Google Scholar 

  • Wright, R.T., R.B. Coffin, C.P. Ersing and D. Pearson. 1982. Field and laboratory measurements of bivalve filtration of natural marine bacterioplankton. Limnology and Oceanography 27:91–98.

    Article  Google Scholar 

  • Zedler, J.B. 1980. Algal mat productivity: comparisons in a salt marsh. Estuaries 3:122–131.

    Google Scholar 

  • ZoBell, C.E. and C.B. Feltham. 1938. Bacteria as food for certain marine invertebrates. Journal of Marine Research 1:312–327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kreeger, D.A., Newell, R.I. (2002). Trophic Complexity Between Producers and Invertebrate Consumers in Salt Marshes. In: Weinstein, M.P., Kreeger, D.A. (eds) Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht. https://doi.org/10.1007/0-306-47534-0_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-47534-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6019-3

  • Online ISBN: 978-0-306-47534-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics