Skip to main content

Picoplankton and Other Non-Bloom-Forming Cyanobacteria in Lakes

  • Chapter
The Ecology of Cyanobacteria

Summary

Studies on the picocyanobacteria, the major non-bloom forming group in lakes, have increased markedly in the past two decades.These cyanobacteria fall into two major groups, those that predominantly occur as solitary cells (here termed Pcy) and those that occur primarily as colonies (CPcy). The single-celled picoplankton have received most ecological study, though the colonial forms are better known taxonomically.The two groups are distributed worldwide and are ubiquitous in all types of lakes of varying trophic condition. The single-celled Pcy populations tend to be predominant in large, deep oligo-mesotrophic lakes, while the colonial species (CPcy) find optimal conditions in warmer, shallower and more nutrient rich (meso-eutrophic) lakes during the summer.The two groups are euryphotic and appear capable of adapting to a wide variety of light conditions, with CPcy more surface oriented and Pcy often reaching sub-surface peaks at irradiance levels 20–50% of surface values. Growth of the Pcy ranges from 0.1 d-1 to about 3.0 d-1 with doubling times from 7 h to 7 d.Their natural population growth rates are highly variable and appear in most cases to be in balance with loss rates, primarily from grazing. Pcy contribute substantially to total primary production within the euphotic zone, most significantly in ultra-oligotrophic lakes, but also in some meso- and eutrophic lakes, showing optimal growth at high N:P ratios (>20 molar) and more limitation by nitrogen than phosphorus.

Pcy seem less resistant to UV-B radiation than larger-celled algae, and their photosynthesis may be more severely impacted because of their small size and high metabolic activity. Both Pcy and CPcy are generally most common in lakes with neutral to slightly alkaline pH conditions, and Pcy disappear from lakes below pH: <6.0. The CPcy appear to be resistant to grazing and may operate as energy shunts or ‘sinks’ in lakes. Pcy on the other hand are an important food source for many protozoan (nanoflagellates and ciliates) and microzooplankton (rotifers and nauphli) grazers in microbial food webs. A plea is made to researchers to increase their interest in CPcy populations so we may in future better understand their role in food webs and energy flows in lakes. We conclude with a comment on the role of Pcy and CPcy pelagic food webs under a warmer, more nutrient deplete and strongly stratified surface layer, of the type that may be more prevalent in a warmer climate expected in the early decades of the next century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Affronti LF and Marshall HG (1994) Using frequency of dividing cells in estimating autotrophic picoplankton growth and productivity in the Chesapeake Bay. Hydrobiologia 284: 193–203

    Article  Google Scholar 

  • Ålvik G (1934) Plankton-Algen norwegischer Austern ollen I. Systematik und Vorkommen der Arten. Bergens Mus Årb 1934 (6): 47 PP

    Google Scholar 

  • Armbrust EV, Bowden JD, Olson RJ and Chisholm SW (1989) Effect of light on the cell cycle of a marine Synechococcus strain. Appl Environ Microbiol 55: 425–432

    PubMed  Google Scholar 

  • Arndt H (1993) Rotifers as predators on components of the microbial web (bacteria, heterrotrophic flagellates, ciliates)—aa review. Hydrobiologia 225/226: 231–246

    Google Scholar 

  • Ayukai T (1996) Possible limitation of the dilution technique for estimating growth and grazing mortality rates of picoplanktonic cyanobacteria in oligotrophic tropical waters. J Exp Mar Biol Ecol 198: 101–111

    Article  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA and Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Progr Ser 10 257–263

    Google Scholar 

  • Bailey-Watts AE and Komárek J (1991) Towards a formal description of a new pecies of Synechococcus (Cyanobacteria/Cyanophyceae) from freshwater picoplankton. Archiv Hydrobiol, Suppl88, Algological Studies 61: 5–19

    Google Scholar 

  • Bell JL (1991) Patches and picoplankton. Effects on larval life spans on gastropod larvae. Am Zool 31: 6A

    Google Scholar 

  • Bell RT and Tranvik L (1993) Impact of acidification and liming on the microbial ecology of lakes. Ambio 22(5): 325–330

    Google Scholar 

  • Bertoni R (1997) The routine use Of AnodiscTM filters With automatic CHN analysers. Mem Ist Ital Idrobiol 56: 157–161

    Google Scholar 

  • Bertoni R and Callieri C (1989) Organic matter and decomposers in Lago Maggiore: a pluriannual study. Mem Ist Iatl Idrobiol 46: 145–172.

    Google Scholar 

  • Bertoni R and Callieri C (1997) Microbial loop and organic carbon in large southern Alpine lakes. In: Mosello R and Giussani G (eds) Documenta Ist. ital. Idrobiol. 61: 201–224

    Google Scholar 

  • Bertoni R and Callieri C (submitted) The effects of UV-B radiation on freshwater autotrophic and heterotrophic picoplankton in a subalpine lake.

    Google Scholar 

  • Bertoni R, Pugnetti A and Barbarewicz C (1997) La radiazione UV-B nei laghi ed i suoi effetti sulle comunità microbiche. Proc 12puoteAIOLCongress. Vol 1 Piccazzo M. (ed.): 245–254

    Google Scholar 

  • Binder BJ and Chisholm SW (1995) Cell cycle regulation in marine Synechococcus sp. strains. Appl Environ Microbiol 61: 708–717

    CAS  Google Scholar 

  • Bird DF and Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231: 493–495

    Google Scholar 

  • Bird DJ and Kalff J (1987) Algal phagotrophy: regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol Oceanogr 32: 277–284

    CAS  Google Scholar 

  • Bloem J, Bar-Gilissen MJB and Cappenberg TE (1986) Fixation, counting and manipulation of heterotrophic nanoflagelates. Appl Environ Microbiol 52: 1266–1272

    PubMed  Google Scholar 

  • Blomqvist P (1996) Late summer phytoplankton responses to experimental manipulations of nutrients and grazing in unlimed and limed Lake Njupfatet, central Sweden. Arch Hydrobiol 137: 425–455

    Google Scholar 

  • Blomqvist P, Petterson A and Hyenstrand P (1994) Ammonium-nitrogen: a key regulatory factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems. Arch Hydrobiol 132:141–164

    CAS  Google Scholar 

  • Bourrelly P (1985) Les Algues ďEaux Douce. N. Boubée, Paris

    Google Scholar 

  • Bums CW and Stockner JG (1991) Picoplankton in six New Zealand lakes: abundance in relation to season and trophic state. Int Revue ges Hydrobiol 76: 523–536

    Google Scholar 

  • Bums CW and Schallenberg M (1996) Relative impacts of copepods, cladocerans and nutrients of the microbial food web of a mesotrophic lake. J Plankton Res 18(5): 683–714

    Google Scholar 

  • Butcher RW (1952) Contributions to our knowledge of smaller marine alga. J marine Biol Assoc 31: 610–652

    Google Scholar 

  • Callieri C (1994a) Primi approcci allo studio del picoplancton del Lago Maggiore. Atti delľ11th Congresso delľAssociazione Italiana di Oceanologia e Limnologia. G Albertelli, De Maio A and Piccazzo M (eds): 247–257.

    Google Scholar 

  • Callieri C (1994b) Extinction coefficient of red, green and blue light and its influence on picocyanobacterial types in lakes at different trophic levels. Mem Ist ital Idrobiol 54: 135–142

    Google Scholar 

  • Callieri C (1998) Pico-blues and theirinteractions with PAR and UV-B. Atti delľ12th Congresso dell’ Associazione Italiana di Oceanologia e Limnologia. Vol 2 Piccazzo M (ed.): 149–158

    Google Scholar 

  • Callieri C (in press) Carbon flux from picocyanobacteria to ciliates in a subalpine lake. Ver Jnternat Verein Limnol27

    Google Scholar 

  • Callieri C, Bertoni R, Amicucci E, Pinolini ML and Jasser I(1996) Growth rates of freshwater picocyanobacteria measured by FDC: problems and potentials for the estimation of picoplankton organic carbon synthesis. Arch Hydrobiol Spec Issues Advances Limnol 48: 93–103.

    Google Scholar 

  • Callieri C and Pinolini ML (1995) Picoplankton in Lake Maggiore, Italy. Int Revue ges Hydrobiol 80: 491–501.

    Google Scholar 

  • Callieri C and Bertoni R (in press) Organic carbon and microbial assemblages in a oligotrophic alpine lake. Mem Ist Ital Idrobiol

    Google Scholar 

  • Callieri C, Pugnetti A and Maanca M (in press) Carbon partitioning in the food web of a high mountain lake: from bacteria to zooplankton. Mem Ist Ital Idrobiol

    Google Scholar 

  • Callieri C and Stockner JG (in press) Pico-blues success across freshwater trophic gradient. Lakes & Reservoirs.

    Google Scholar 

  • Campbell L and Carpenter EJ (1986a) Diel pattern of cell division in marine Synechococcus spp. (Cyanobacteria): use of frequency of dividing cell technique to measure growth rate. Mar Ecol Progr Ser 32: 139–148

    Google Scholar 

  • Campbell L and Carpenter EJ (1986b) Estimating the grazing pressure of heterotrophic nanoplankton on Synechococcus spp. using the seawater dilution and selective inhibitor techniques. Mar Ecol Progr Ser 33: 121–129

    Google Scholar 

  • Caron DA, Lim EL, Miceli G, Waterbury JB and Valois FW (1991) Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and coastal plankton community. Mar Ecol Progr Ser 76: 205–217

    Google Scholar 

  • Carpenter EJ and Campbell L (1988) Diel pattern of cell division and growth rate of Synechococcus spp. in Long Island Sound. Mar Ecol Progr Ser 47: 179–183

    Google Scholar 

  • Carreto JI, Carignan MO, Daleo G and De Marco SG (1990) Occurrence of mycosporine-like amino acids in the red tide dinoflagellate Alexandrium escavutum: UV-photoprotective compounds? J Plankton Res 12: 909–921

    CAS  Google Scholar 

  • Charpy L and Blanchot J (1996) Prochlorococcus contribution to phytoplankton biomass and production of Takapoto Atoll (Tuamotu Archipelago). Comptes Rendus de ľAcademie des Sciences 319(2): 131–137

    Google Scholar 

  • Chisholm S,. Armbrust EV and Olson RJ (1986) The individual cell in phytoplankton ecology: cell cycle and applications of flow cytometry. In: Platt T and Li WK (eds) Photosynthetic Picoplankton. pp 343–369. Can Bull Fish Aquat Sci 214

    Google Scholar 

  • Chisholm SW (1992) Phytoplankton size. In: Falkowski PG and Woodhead AD (eds) p 213–237 Primary Productivity and Biogeochemical Cycles in the Sea

    Google Scholar 

  • Clarke AK, Campbell D, Gustafsson P and Oquist G (1995) Dynamic responses of photosystem 11 and phycobilisomes to changing light in the cyanobacterium Synechococcus pcc 7942. Planta 197 (3): 553–562

    Article  CAS  Google Scholar 

  • Cleven EJ(1996) Indirectly fluorescently labelled flagellates (IFLF):a tool to estimate the predation on free-living heterotrophic flagellates. J Plankton Res 18 (3): 429–443

    Google Scholar 

  • Craig SR (1987) The distribution and contribution of picoplankton to deep photosynthetic layers in some meromictic lakes. Acta Acad Abo 47: 55–81

    Google Scholar 

  • Cristoffersen K (1994) Variation of feeding activities of heterotrophic nanoflagellates on picoplankton In: Amdt H (ed.) Protozooplankton Ecology Methods and Seasonal Successions. pp 111–123 Vol 8 (1–2)

    Google Scholar 

  • Cronberg G (1988) Cyanodictyon tubiforme a new chroococcal blue-green alga from Lake Börringesjön, Scania, Sweden. Arch Hydrobiol Suppl 80(1–4), Algological Studies 50-53: 191–194

    Google Scholar 

  • Cronberg G (1991) Cyanothamnos plancticus gen. et sp. nov., a new colonial cyanophyte from an eutrophic Scanian lake, Sweden. Arch Hydrobiol Suppl 92(1–4), Algological Studies 64 61–70.

    Google Scholar 

  • Cronberg G and Komárek J (1994) Planktic Cyanoprokaryotes found in South Swedish lakes during the XIIth International Symposium on Cyanophyte Research, 1992. Algological Studies 75: 323–352

    Google Scholar 

  • Cronberg G and Weibull C (1981) Cyanodictyon imperfectum, a new chroococcal alga from Lake Trummen, Sweden. Arch Hydrobiol/Suppl 60, Algological Studies 27: 101–110

    Google Scholar 

  • Cullen JJ, Neale PJ and Lesser PM (1992) Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258: 646–650

    CAS  Google Scholar 

  • Drews G, Prauser H and Uhlmann D (1961) Massenvorkommen von Synechococcus pluncticus nov. spec., einer solitàren planktischen Cyanophyceae, in einem Abwasserteich Betrag zur Kenntnis der sogenannten “μ-Algen”. Arch Mikrobiol 39: 101–115

    Article  CAS  PubMed  Google Scholar 

  • Ducklow HW (1991) The passage of carbon through microbial food webs: results from network flow analysis. Mar Microb Food Webs 5: 129–144

    Google Scholar 

  • Ducklow HW, Purdie DA, LeB-Williams PJ and Davies JM (1986) Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 232: 865–867

    CAS  Google Scholar 

  • Ernst A (1991) Cyanobacterial picoplankton from Lake Constance. I. Isolation by fluorescence characteristics. J Plankton Res 13: 1307–1312

    Google Scholar 

  • Ernst A, Marschall P and Postius C (1995) Genetic diversity among Synechococcus spp. (cyanobacteria) isolated from the pelagial of Lake Constance. FEMS-Microbiol Ecol 17(3): 197–204

    CAS  Google Scholar 

  • Fahnenstiel GL and Carrick HJ (1992) Phototrophic picoplankton in lakes Huron and Michigan: abundance, distribution, composition and contribution to biomass and production. Can J Fish Aquat Sci 49 (2): 379–388

    Google Scholar 

  • Fahnenstiel GL, Carrick HJ, Rogers CE and Sicko-Goad L (1991a) Red fluorescing phototrophic picoplankton in the Laurentian Great Lakes: what are they and what are they doing? Int Revue ges Hydrobio l76: 603–616

    Google Scholar 

  • Fahnenstiel GL, Patton TR, Carrick HJ and McCormick MJ (1991b) Diel division cycle and growth rates of Synechococcus in lakes Huron and Michigan. Int Revue ges Hydrobio l76: 657–664

    Google Scholar 

  • Fahnenstiel GL, Redalje D and Lohrenz S (1994) Has the importance of photoautotrophic picoplankton been overstimated? Limnol Oceanogr 39(2): 432–438

    Google Scholar 

  • Falkowski P and LaRoche J (1991) Acclimation to spectral growth irradiance in algae. J Phycol 25: 8–14

    Google Scholar 

  • Fenchel T (1987) The Ecology of Protozoa. Springer Verlag, New York, NY

    Google Scholar 

  • Findley DL and Kasian SEM (1990) Phytoplankton communities of lakes experimentally acidified with sulphuric and nitric acids. Can J Fish Aquat Sci 47: 1378–1386

    Google Scholar 

  • Fogg GE (1986) Picoplankton. Proc R Soc Lond B 228: 1–30

    Google Scholar 

  • Gallager SM, Waterbury JB and Stoecker DK. (1994) Efficient grazing and utilization of the marine cyanobacterium Synechococcus by larvae of the bivalve Mercenaria mercenaria. Mar Biol 119 (2): 251–259

    Article  Google Scholar 

  • Garcia-Pichel F and Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacteria sheath pigment. J Phycol 27: 395–409

    Article  CAS  Google Scholar 

  • Garcia-Pichel F and Castenholz RW (1993) Occurrence of UV-absorbing mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59 (1): 163–169

    CAS  PubMed  Google Scholar 

  • Geitler L (1932) Cyanophyceae In Rabenhorst’s Kryptogamen-flora Vol 14 pp 1069. Leipzig

    Google Scholar 

  • Gervais F, Padisak J and Koschel R (1997) Do light quality and low nutrient concentration favour picocyanobacteria below the thermocline of the oligotrophic Lake Stechlin? J Plankton Res 19(6):771–781

    Google Scholar 

  • Glover HE, Keller MD and Guillard RRL (1986) Light quality and oceanic ultraphytoplankters. Nature 319: 142–143

    Article  Google Scholar 

  • Glover HE, Phinney DA and Yentsch CS (1985) Photosynthetic characteristics of picoplankton compared with those of larger phytoplankton populations in various water masses in the Gulf of Maine. Biol Oceanogr 3: 223–248

    Google Scholar 

  • Gophen M and Geller W (1984) Filter mesh size and food particle uptake by Daphnia. Oecologia 64: 408–412

    Article  Google Scholar 

  • Häder DP (1993a) Effects of enhanced solar ultraviolet radiation on aquatic ecosystems. In: Tevini M (ed.) UV-B Radiation and Ozone Depletion, Effects on Humans, Animals, Plants, Microorganisms and Materials. pp 155–191

    Google Scholar 

  • Hader DP (1993b) Risks of enhanced solar ultraviolet radiation for aquatic ecosystems. Pro Phycol Res 9: 1–45

    Google Scholar 

  • Hader DP (1996) Effect of enhanced solar UV-B radiation on phytoplankton. Scentia Marina 60 (Suppl 1): 59–63

    Google Scholar 

  • Hall JA (1991) Long-term preservation of picophytoplankton for counting by fluorescence microscopy. Br Phycol J 26: 169–176

    Google Scholar 

  • Hall JA and Vincent WF (1994) Vertical and horizontal structure of the picophytoplankton community in a stratified coastal system off New Zealand. NZ J Mar Freshwater Res 28 (3): 299–308

    CAS  Google Scholar 

  • Hauschild CA, McMurter HJG and Pick FR (1991) Effect of spectral quality on growth and pigmentation of picocyanobacteria. J Phycol 27: 698–702

    Article  Google Scholar 

  • Havens KE and Heath RT (1991) Increased tranparency due to changes in the algal size spectrum during experimental acidification in mesocosms. J Plankton Res 13(3): 673–679

    Google Scholar 

  • Hawley GRW and Whitton BA (1991a) Survey of algal picoplankton from lakes in five continents. Verh Intemat Verein Limnol 24: 1220–1222.

    Google Scholar 

  • Hawley GRW, Whitton BA (1991b) Seasonal changes in chlorophyll-containing picoplankton populations of ten lakes in northern England. Int. Rev. ges. Hydrobiol. 76: 545–554.

    Google Scholar 

  • Hayat MA (1981) Fixation for Electron Microscopy. Academic Press NY

    Google Scholar 

  • Henderson M, Stockner JG and Levy DA (1992) Probable consequences of climate change on freshwater aspects of the production of Adams River sockeye salmon (Oncorhynchus nerka). Geo Journal 28: 51–59

    Google Scholar 

  • Hessen DO, Van Donk E and Andersen T (1995) Growth responses, P-uptake and loss of flagellae in Chlamydomonas reinhardfii exposed to UV-B. J Plankton Res 17(1): 17–27

    Google Scholar 

  • Hickel B (1985) Cyanonephron styloides gen et sp nov a new chroococcal blue-green algae (Cyanophyta) from a brackish lake. Arch Hydrobiol/Suppl 71, Algological Studies 38/39: 99–104

    Google Scholar 

  • Hickel B (1991) Two new chroococcal cyanophytes from a brackish environment, (Schlei-Fjord) Germany Algological Studies 64: 97–104

    Google Scholar 

  • Hind& F (1975) Einige neue und interessante Planktonblaualgen aus der Westslowake. Arch Hydrobiol/Suppl 46 Algological Studies 13: 330–335

    Google Scholar 

  • Hindák F (1982) On some planktonic coccoid blue-green algae characteristic of Fe-precipitates. Arch Hydrobiol Suppl 63(3) Algological Studies 32: 241–258

    Google Scholar 

  • Hind& F (1985) The cyanophycean genus Lemmermanniella Geitler 1942. Arch Hydrobiol Suppl 71(3) Algological Studies 40: 393–401

    Google Scholar 

  • Holm-Hansen O, Lubin D and Helbling EW (1993) Ultraviolet radiation and its effects on organisms in aquatic environments. In Young AR (ed.) Environmental UV Photobiology. pp 379–425 Plenum Press New York

    Google Scholar 

  • Huang TC, Tu J Chow JT and Chen TH (1990) Circadian rhythm of the prokaryote Synechococcus sp. RF-1. Plant Physiol 92: 531–533

    CAS  Google Scholar 

  • Iturriaga R and Mitchell BG (1986) Chroococcoid cyanobacteria: a significant component in the food web dynamics of the open ocean. Mar Ecol Progr Ser 28: 291–297

    Google Scholar 

  • James MR, Hall JA and Barrett DP (1996) Grazing by protozoa in marine coastal and oceanic ecosystems off New Zealand. N Z J Mar Freshwater Res 30: 313–324

    CAS  Google Scholar 

  • Jeffrey WH, Pledger RJ, Aas P, Hager S, Coffin RB, Vonhaven R and Mitchell DL (1996) Diel and depth profiles of DNA photodamage in bacterioplankton exposed to ambient solar ultraviolet radiation. Mar Ecol Progr Ser 137(1–3): 238–291

    Google Scholar 

  • Johnson PW and Sieburth J McN (1979) Chrococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24 928–935

    Google Scholar 

  • Joint IR (1990) The response of picophytoplankton to light. In: Herring PJ, Campbell AK Whitfield M and Maddock L (eds) Light and Life in the Sea, pp 105–115. Cambridge University Press, UK

    Google Scholar 

  • Jurgens K, Gasol JM Massana R and Pedrós Alió C (1994) Control of heterotrophic bacteria and protozoans by Daphnia pulex in the epilimnion of Lake Cisò. Arch Hydrobiol 131: 55–78

    Google Scholar 

  • Kana TM and Glibert PM (1987a) Effect of irradiances up to 2000 μE m-2s-1 on marine Synechococcus WH7803-I.Growth, pigmentation, and cell composition. Deep Sea Res 34: 479–495

    CAS  Google Scholar 

  • Kana TM and Glibert PM (1987b) Effect of irradiances up to 2000 μE m-2 s-1 on marine Synechococcus WH7803-II. Photosynthetic responses and mechanisms. Deep Sea Res 34(4): 497–516

    CAS  Google Scholar 

  • Karentz D, McEuen FS, Land MC and Dunlap CW (1991) Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar Biol 108: 157–166

    Article  CAS  Google Scholar 

  • Kiørboe T and Hansen J (1993) Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material. J. Plankton Res. 15: 993–1018

    Google Scholar 

  • Kirchman DL (1993) Statistical analysis of direct counts of microbial abundance.In: Kemp PF, Sherr BF, Sherr EB and Cole JJ (eds) Handbook of Methods in Aquatic Microbial Ecology. pp 117–121 Lewis Publ

    Google Scholar 

  • Klut, EM and Stockner JG (1991) Picoplankton associations in an ultra-oligotrophic lake on Vancouver Island, British Columbia. Can J Fish Aquat Sci 48: 1092–1099

    Google Scholar 

  • Komfirek J (1958) Die taxonomische Revision der planktischen Blaualgen der tschechoslovakei Komfirek J Ettl H Algological Studies pp 10–106

    Google Scholar 

  • Komfirek J (1976) Taxonomic review of the genera Synechocystis SAUV. 1892, Synechococcus Nag. 1849 and Cyanothece gen nov (Cyanophyceae) Arch Protistenk 118: 119–179

    Google Scholar 

  • Komfirek J (1996) Towards a combined approach for the taxonomic and species delimitation of picoplanktic cyanoprokaryotes. Algological Studies 83: 377–401

    Google Scholar 

  • Komfirek J and Kling H (1991) Variation in six planktonic cyanophyte genera in Lake Victoria (East Africa) Algological Studies 61: 21–45

    Google Scholar 

  • Komfirek J and Komárková-Legnerová J (1992) Variability of some planktic gomphosphaeriod cyanoprocaryotes in northern lakes. Nord J Bot. 12: 513–524

    Google Scholar 

  • Komárková J and Cronberg G (1985) Lemmermanniella pallida (LEMM) GEITL from South Swedish lakes. Arch Hydrobiol Suppl 71(3) Algological Studies 40: 403–413

    Google Scholar 

  • Komárková-Legnerová J and Cronberg G (1994) Planktic blue-green algae from lakes in South Scania Sweden Part I Chroococcales. Algological Studies 72: 13–51

    Google Scholar 

  • Kondo T, Strayer CA, Kulkarni RD, Taylor W, Ishiur M, Golden SS and Johnson CH (1993) Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc Natl Acad Sci US 90: 5672–5676

    CAS  Google Scholar 

  • Kulkarni RD and Golden SS (1995) Form II of D1 is important during transition from standard to high light intensity in Synechococcus sp strain PCC7942. Photosynthesis Res 46: 435–443

    CAS  Google Scholar 

  • Kuuppo-Leinikki P and Kuosa H (1989) Preservation of picoplanktonic cyanobacteria and heterotrophic nanoflagellates for epifluorescence microscopy. Arch Hydrobiol 114: 631–636

    Google Scholar 

  • Laamanen M (1996) Cyanoprokaryotes in the Baltic Sea ice and winter plankton Algological Studies 83: 423–433

    Google Scholar 

  • Landry MR, Haas LW and Fagemess VL (1984) Dynamics of microbial plankton community: experiments in Kaneohe Bay Hawaii. Mar Ecol Progr Ser 16:127–133

    CAS  Google Scholar 

  • Landry MR Kirshtein J and Constantinou J (1995) A refined dilution technique for measuring the community grazing impact of microzooplankton with experimental tests in the Central Equatorial Pacific. Mar Ecol Progr Ser 120 (1–3): 53–63

    Google Scholar 

  • Lagerheim G (1883) Bidrag till Sveriges algflora Öfv Kgl Vetensk-Akad Förhandl 40 (2)

    Google Scholar 

  • Lemmermann E (1904) Das Plankton schwedischer Gewasser. Ark Bot 2(2):1–209

    Google Scholar 

  • Lindel D and Post AF (1995) Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat) Red Sea. Limnol Oceanogr 40: 1130–1141

    Google Scholar 

  • Liu Z (1990) Estimating the grazing pressure of heterotrophic nanoplankton on Synechococcus spp. in the surface coastal water using selective inhibitor techniques. Dongay-Mar Sci 8(3): 49–54

    Google Scholar 

  • Liu H, Campbell L and Landry MR (1995) Growth and mortality rates of Prochlorococcus and Synechococcus measured with a selective inhibitor technique. Mar Ecol Progr Ser 116: 277–287

    Google Scholar 

  • Lund JWG (1961) The periodicity of æalgae in three English lakes. Verh Intem Verh Limnol 14: 147–154

    Google Scholar 

  • MacIsaac ER and Stockner JG (1993) Enumeration of phototrophic picoplankton by autofluorescence microscopy. In: Sherr B and Sherr E (eds) The Handbook of Methods in Aquatic Microbial Ecology. pp 187–197 CRC Press, Boca Raton F1

    Google Scholar 

  • Maeda H, Kawai A and Tilzer MM (1992) The water bloom of cyanobacterial picoplankton in Lake Biwa Japan. Hydrobiologia 248: 93–103

    Article  Google Scholar 

  • Malinsky-Rushansky N, Berman T and Dubinsky Z (1995) Seasonal dynamics of picophytoplankton in Lake Kinneret Israel. Freshwater Biol 34: 241–254

    Google Scholar 

  • Mann KH (1993) Physical oceanography, food chains, and fish stocks: a review. ICES J Mar Sci 50: 105–119

    Article  Google Scholar 

  • Mastala Z, Herodek S, V-Balogh K, Borbély G, Shafik HM and Voros L (1996) Nutrient requirement and growth of a Synechococcus species isolated from Lake Balaton. Int Revue ges Hydrobiol 81: 503–512

    Google Scholar 

  • McMurther HJC and Pick F (1994) Fluorescence characteristics of a natural assemblage of freshwater picocyanobacteria. J Plankton Res 16: 911–925

    Google Scholar 

  • Meyer B (1994) A new species of Cyanodictyon (Cyanophyceae, Chroococcales) planktic in eutrophic lakes. Algological Studies 75: 183–188

    Google Scholar 

  • Moeller RE (1994) Contribution of ultraviolet radiation (UV-A UV-b) to photoinhibition of epilimnetic phytoplankton in lakes of differing UV transparency. Arch Hydrobiol Beih 43: 157–170

    Google Scholar 

  • Monger BC and Landry MR (1992) Size selectivity grazing by heterotrophic nanoflagellates: an anlysis using live-stained bacteria and dual-beam flow cytometry. In: Bjoersen PK and Riemann B (eds) Microbial Ecology of Pelagic Environments. 37 pp 173–185

    Google Scholar 

  • Moms I and Glover HE (1981) Physiology of photosynthesis by marine coccoid cyanobacteria-some ecological implications. Limnol Oceanogr 26: 957–961

    Google Scholar 

  • Muller-Niklas G, Heissenberger A, Puskaric S and Herndl GJ (1995) Ultraviolet-B radiation and bacterial metabolism in coastal waters. Aquat Microb Ecol 9: 111–116.

    Google Scholar 

  • Nagata T, Takai K, Kawanobe K, Kim D, Nakazato R, Guselnikova N, Bondarenko N, Mologawaya 0, Kostmova T, Drucker V, Satoh Y and Watanabe Y (1994) Autotrophic picoplankton in southern Lake Baikal: abundance growth and grazing mortality during summer. J Plankton Res 16 (8): 945–959

    Google Scholar 

  • Nagata T, Takai K, Kawabata K, Nakanishi M and Urabe J (1996) The trophic transfer via a picoplankton-flagellate-copepod food chain during a picocyanobacterial bloom in Lake Biwa. Arch Hydrobiol 137: 145–160

    Google Scholar 

  • Naumann E (1924) Sotvatmets plankton Stockholm, Sweden pp 267

    Google Scholar 

  • Nielsen T and Ekelund NGA (1995) Influence of solar ultraviolet radiation on photosynthesis and motility of marine phytoplankton. FEMS Microbiol ecology. 18(4): 281–288

    CAS  Google Scholar 

  • Ning X and Vaulot D (1992) Estimating Synechococcusspp growth rates and grazing pressure by heterotrophic nanoplankton in the English channel and the Celtic Sea. Acta-Oceanol Sin 11(2): 255–273

    Google Scholar 

  • Overbeck J (1962) Das Nannoplankton (μ-Algen) der Rugenschen Brackwasser als Hauptproduzent in Abhangigkeit vom Salzgehalt. Kieler Meeresforschungen 18: 157–171

    Google Scholar 

  • Pace ML, McManus GB and Findlay SEG (1990) Plankton community structure determines the fate of bacterial production in a temperate lake. Limnol Oceanogr 35:795–808

    Google Scholar 

  • Padisák J, Krienitz L, Koschel R and Nedoma J (1997) Deep-layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development and erosion. Eur J Phycol 32: 403–416.

    Google Scholar 

  • Padisák J, Krienitz L, Scheffler W, Koschel R, Kristiansen J and Grigorszky I (1998) Phytoplankton succession in the oligotrophic Lake Stechlin (Germany) in 1994 and 1995. Hydrobiologia 369/370: 179–197

    Google Scholar 

  • Paerl HW (1977) Ultraphytoplankton biomass and production in some New Zealand Lakes. N Z J Mar Freshwater Res 11: 297–305

    Google Scholar 

  • Passoni S, Callieri C and Heinimaa S (1997) Dinamiche di distribuzione del picoplancton autotrofo nel Lago Maggiore. Proc.12th AIOL Congress. Vol 1 Piccazzo M. (ed.): 109–118

    Google Scholar 

  • Passoni S and Callieri C (in press) Picocyanobacteria single forms, aggregates and micro-colonies: survival strategy or species succession? Ver Intemat Verein Limnol 27

    Google Scholar 

  • Pedrós-Alió C and Brock TD (1983) The importance of attachment to particles for planktonic bacteria. Arch Hydrobiol 98: 354–379

    Google Scholar 

  • Pernthaler J, Šimek K, Sattler B, Schwarzenbacher A, Bobkova J and Psenner R (1996a) Short-term changes of protozoan control on autotrophic picoplankton in an oligo-mesotrophic lake. J Plankton Res 18: 443–462

    Google Scholar 

  • Pemthaler J, Sattler B, Šimek K, Schwarzenbacher B and Psenner R (1996b) Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat Microb Ecol 10: 255–263.

    Google Scholar 

  • Petersen R (1991) Carbon-14 uptake by picoplankton and total phytoplankton in eight New Zealand lakes. Int Revue ges Hydrobiol 76: 631–641

    CAS  Google Scholar 

  • Pick FR (1991) The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol Oceanogr 36: 1457–1462

    CAS  Google Scholar 

  • Pick FR and Agbeti DM (1991) The seasonal dynamic and composition of photosynthetic picoplankton communities in temperate lakes in Ontario, Canada. Int Revue ges Hydrobiol 76: 565–580

    Google Scholar 

  • Pick FR and Bérubé C (1992) Diel cycles in the frequency of dividing cells of freshwater picocyanobacteria. J Plankton Res 14: 1193–1198

    Google Scholar 

  • Platt T (1971) The annual production by phytoplankton in St. Margaret’s Bay Nova Scotia. J Cons int Explor Mer 33(3): 324–333

    Google Scholar 

  • Platt T and Li WKW (1986) Photosynthetic picoplankton. Can Bull Fish Aquat Sci 214

    Google Scholar 

  • Porter KG, Pearl H, Hodson R, Pace M, Priscu J, Riemann B, Scavia D and Stockner J (1988) Microbial interactions in lake food webs. In: Carpenter SR (ed.) Complex Interactions in Lake Communities. pp 209–228. Springer Verlag, New York

    Google Scholar 

  • Postius C, Ernst A, Kenter U and Boger P (1996) Persistence and genetic diversity among strains of phycoerythrin-rich cyanobacteria from the picoplankton of Lake Constance. J Plankton Res 18: 1159–1166

    Google Scholar 

  • Proteau PJ, Gerwick WH, Garcia-Pichel F and Castenholz RW (1993) The structure of scytonemin an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49: 825–829

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal S and Murthy SDS (1996) Ultraviolet-B radiation induced alterations in photosynthetic electron transport activities of the cyanobacterium Synechococcus 6301. Photosynthetica 32(2): 281–284

    CAS  Google Scholar 

  • Raven JA (1986) Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Platt T and Li WKW (eds) Photosynthetic Picoplankton. Can Bull Fish Aquat Sci 214

    Google Scholar 

  • Reimann B and Christoffersen K (1993) Microbial trophodynamics in temperate lakes. Marine Microbial Food Webs. 7: 69–100

    Google Scholar 

  • Reynolds CS (1988) The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Verh intemat Verein Limnol 23: 683–691

    Google Scholar 

  • Roff JC, Turner JT, Webber MK and Hopcroft RR (1995) Bacterivory by tropical copepod nauplii extent and possible significance. Aquatic Microbial Ecology 9 (2): 165–175

    Google Scholar 

  • Ruiz J, Garcia CM and Rodriguez J (1996) Sedimentation loss of phytoplankton cells from the mixed layer: effects of turbulence levels. J Plankton Res 18 (9): 1727–1734

    Google Scholar 

  • Sanders RW and Porter KG (1988) Phagotrophic phytoflagellates. Adv Micr Ecol 10: 167–192

    Google Scholar 

  • Sanders RW, Porter KG, Bennet SJ and DeBiase AE (1989) Seasonal patterns of bacterivory by flagellates, ciliates, rotifers and cladocerans in a freshwater planktonic community. Limnol Oceanogr 34 673–687

    Google Scholar 

  • Schindler DW (1990) Experimental perturbations of the whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos 57: 25–41

    Google Scholar 

  • Sherr EB and Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325: 710–711

    Article  Google Scholar 

  • Sherr EB and Sherr BF (1993) Protistan grazing rates via uptake of fluorescently labeled prey. In: Kemp P, Sherr B, Sherr E and Cole J (eds) Handbook of Methods in Aquatic Microbial Ecology. pp 695–701. Lewis Pub Boca Raton, FL

    Google Scholar 

  • Sherr EB, Sherr BF, Bennan T and Hadas O (1991) High abundance of picoplankton-ingesting ciliates during late fall in Lake Kinneret Israel. J Plankton Res 13: 789–799

    Google Scholar 

  • Sherr BF, Sherr EB and McDaniel J (1992) Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Appl Environ Microbiol 58 (8): 2381–2385

    PubMed  Google Scholar 

  • Shortreed KS and Stockner JG (1990) Effect of nutrient additions on lower trophic levels of an oligotrophic lake with a seasonal hypolimnetic chlorophyll maximum. Can J Fish Aquat Sci 47: 262–273

    CAS  Google Scholar 

  • Sieburth JMcN, Smetacek V and Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23: 1256–1263

    Google Scholar 

  • Sime-Ngando T (1995) Population dynamics of autotrophic picoplankton in relation to environmental factors in a productive lake. Aquat Sci 57: 91–105

    Article  Google Scholar 

  • Šimek K, Bobkova J, Macek M, Nedoma J and Psenner R (1995) Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol Oceanogr 40(6): 1077–1090

    Google Scholar 

  • Šimek K, Macek M, Pernthaler J, Straskrabov V and Psenner R (1996) Can freshwater planktonic ciliates survive on a diet of picoplankton? J Plankton Res 18: 597–613

    Google Scholar 

  • Skuja H (1932) Vorarbeiten zu einer Algenflora von Lettland. Bibliotheca Phycologica 26: 1–302

    Google Scholar 

  • Skuja H (1948) Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symb bot upsal 9(3): 1–399

    Google Scholar 

  • Skuja H (1964) Grundzuge der Algenflora und Algenvegetation der Fjeldgegenden um Abisko in schwedishch-Lappland. Nova Acta R SOC Sci Upsal Ser. 418(3):1–465

    Google Scholar 

  • Smayda TJ (1974) Some experiments on the sinking characteristics of two freshwater diatoms. Limnol Oceanogr 19: 628–635

    Google Scholar 

  • Smith RC and Baker KS (1989) Stratospheric ozone middle ultraviolet radiation and phytoplankton productivity. Oceanography 2: 4–11

    Google Scholar 

  • Sommaruga R and Robarts (1997) The significance of autotrophic and heterotrophic picoplankton in hypertrophic ecosystems. FEMS Microbiol Ecol 24: 187–200

    CAS  Google Scholar 

  • Søndergaard M (1991) Phototrophic picoplankton in temperate lakes: seasonal abundance and importance along a trophic gradient. Int Revue ges Hydrobiol 76: 505–522

    Google Scholar 

  • Stanier RY, Kuniswawa R, Mandel R and Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev 35:171–205

    CAS  PubMed  Google Scholar 

  • Stockner JG (1987) Lake fertilization: the enrichment cycle and lake sockeye salmon (Oncorhynchus nerka) production. In: Smith HD Margolis L and Wood CC (eds) Sockeye Salmon (Oncorhynchus nerka) Population Biology and Future Management, pp 198–215. Can Spec Publ Fish Aquat Sci 96

    Google Scholar 

  • Stockner JG (1991) Autotrophic picoplankton in freshwater ecosystems: the view from the summit. Int Revue ges Hydrobiol 76: 483–492

    Google Scholar 

  • Stockner JG (1998) Global warming, picocyanobaceria and fisheries decline: is there a connection? Proc.12°th AIOL Congress. Vol 2 Piccazzo M. (ed.): 29–37

    Google Scholar 

  • Stockner JG and Antia NJ (1986) Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can J Fish Aquat Sci 43: 2472–2503

    Google Scholar 

  • Stockner JG, Klut ME and Cochlan WP (1990) Leaky filters: a warning to aquatic ecologists. Can J Fish Aquat Sci 47: 16–23

    Google Scholar 

  • Stockner JG and MacIsaac EM (1996) British Columbia lake enrichment programme: two decades of habitat enhancement for sockeye salmon. Reg Rivers 12: 547–561

    Google Scholar 

  • Stockner JG and Porter KG (1988) Microbial food webs in freshwater planktonic ecosystems. Carpenter SR (ed.) Complex Interactions in Lake Communities. pp 69–83 Springer-Verlag New York

    Google Scholar 

  • Stockner JG and Shortreed KS (1988) Response of Anabaena and Synechococcus to manipulation of nitrogen: phosphorus ratios in a lake fertilization experiment. Limnol Oceanogr 33(6): 1348–1361

    CAS  Google Scholar 

  • Stockner JG and Shortreed KS (1989) Algal picoplankton production and contribution to food webs in oligotrophic British Columbia lakes. Hydrobiologia 173:151–166

    Article  CAS  Google Scholar 

  • Stockner JG and Shortreed KS (1991) Phototrophic picoplankton: community composition abundance and distribution across a gradient of oligotrophic British Columbia and Yukon Territory lakes. Int Revue ges Hydrobiol 76: 581–601

    Google Scholar 

  • Stockner JG and Shortreed KS (1994) Autotrophic picoplankton community dynamics in a prealpine lake in British Columbia, Canada. Hydrobiologia 274:133–142

    Google Scholar 

  • Suttle CA (1994) Dynamics and distribution of cyanophages and their effect on marine Synechococcus sp. Appl Env Microbiol 60:3167–74

    Google Scholar 

  • Suttle CA, Cochlan WP and Stockner JG (1991) Size-dependent ammonium and phosphate uptake and N:P supply ratios in an oligotrophic lake. Can J Fish Aquat Sci 48: 1226–1234

    CAS  Google Scholar 

  • Suttle CA, Stockner JG and Harrison PJ (1987) Effects of nutrient pulses on community structure and cell size of a freshwater phytoplankton assemblage in culture. Can J Fish Aquat Sci 44: 1768–1774

    Google Scholar 

  • Suttle CA, Stockner JG, Shortreed KS and Harrison PJ (1988) Time-course studies of size-fractionated phosphate uptake: are larger cells better competitors for pulses of phosphate than smaller cells? Oecologia 74: 571–576

    Article  Google Scholar 

  • Sweeney BM and Borgese MB (1989) A circadian rhythm in cell division in a prokaryote, the cyanobacterium Synechococcus WH7803. J Phycol 25: 183–186

    Article  Google Scholar 

  • Takamura N and Nojiri Y (1994) Picophytoplankton biomass in relation to lake trophic state and the TN:TP ratio of lake water in Japan. J Phycol 30: 439–444

    Article  CAS  Google Scholar 

  • Takano H, Arai T, Hirano M and Matsunaga T (1995) Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp NKBG 042902. Appl Microbiol Biotechnol 43(6): 1014–1018

    Article  CAS  Google Scholar 

  • Tandeau de Marsac N (1977) Occurrence and chromatic adaptation in cyanobacteria. J Bacteriol 130: 82–91

    CAS  PubMed  Google Scholar 

  • Vanderploeg HA (1990) Feeding mechanisms and particles selection in suspension-feeding zooplankton. In: Wotton RS (ed.) The biology of particles in aquatic systems. pp 183–212 CRC Press Boston

    Google Scholar 

  • Vaulot D, LeBot N, Marie D and Fukai E (1996) Effect of phosphorus on the Synechococcus cell cycle in surface Mediterranean waters during summer. Appl Environ Microbiol 62(7): 2527–2533

    CAS  Google Scholar 

  • Vincent WF and Roy S (1993) Solar ultraviolet-B radiation and aquatic primary production: damage, protection and recovery. Environ Rev 1: 1–12

    CAS  Google Scholar 

  • Vinebrooke RD and Leavitt PR (1996) Effects of ultraviolet radiation on periphyton in an alpine lake. Limnol Oceanogr 41(5): 1035–1040

    CAS  Google Scholar 

  • Voros L, Callieri C Balogh KV and Bertoni R (1998) Freshwater picocyanobacteria along trophic gradient and light quality range. Hydrobiologia 369/370: 117–125

    CAS  Google Scholar 

  • Vörös L, Gulyas P and Nemeth J (1991) Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Int Revue ges Hydrobiol 76: 617–629

    Google Scholar 

  • Vrede K (1996) Regulation of bacterioplankton production and biomass in an oligotrophic clearwater lake — the importance of the phytoplankton community. J Plankton Res 18: 1009–1032

    Google Scholar 

  • Wanberg SA, Selmer JS and Gustavson K (1996) Effects of UV-B radiation on biomass and composition in marine phytoplankton communities. Scentia Marina 60: 81–88

    Google Scholar 

  • Wang KS and Chai TJ (1994) Reduction in omega-3 fatty acids by UV-B irradiation in microalgae. J Appl Phycol 6: 415–421

    Article  CAS  Google Scholar 

  • Waterbury JB, Watson SW, Guillard RR and Brand LE (1979) Widespread occurrence of a unicellular, marine planktonic cyanobacterium. Nature 277: 293–294

    Article  Google Scholar 

  • JB, Watson SW, Valois FW and Franks DG (1986) Biological and ecological characterisation of the marine unicellular cyanobacterium Synechococcus. Can Bull Fish Aquat Sci 214: 17–120

    Google Scholar 

  • Waterbury JB, Willey JM, Franks DG, Valois FW and Watson SW (1985) A cyanobacterium capable of swimming motility. Science 230: 74–76

    Google Scholar 

  • Wehr JD (1989) Experimental tests of nutrient limitation in freshwater picoplankton. Appl Environ Microbiol 55(6): 1605–1611

    CAS  PubMed  Google Scholar 

  • Wehr JD (1991) Nutrient and grazer-mediated effects on picoplankton and size structure in phytoplankton communities. Int Revue ges Hydrobiol 76: 643–656

    CAS  Google Scholar 

  • Wehr JD (1993) Effects of experimental manipulations of light phosphorus supply on competition among picoplankton and nanoplankton in an oligotrophic lake. Can J Fish Aquat Sci 50 936–945

    Google Scholar 

  • Weisse T (1988) Dynamics of autotrophic picoplankton in Lake Constance. J Plankton Res 10: 1179–1188

    Google Scholar 

  • Weisse T (1993) Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In: Jones JG (ed.) Advances in Microbial Ecology. Vol 13, pp 327–370 Plenum Press, New York

    Google Scholar 

  • Weisse T and Kenter U (1991) Ecological characteristics of autotrophic picoplankton in a prealpine lake. Int Revue ges Hydrobiol 76: 493–504

    Google Scholar 

  • Weisse T and Schweizer A (1991) Seasonal and interannual variation of autotrophic picoplankton in a large prealpine lake (Lake Constance). Verh Intemat Verein Limnol 24: 821–825

    Google Scholar 

  • Weisse T and Stockner JG (1993) Eutropication: the role a microbial food webs. Mem Ist ital Idrobiol 52: 133–150

    Google Scholar 

  • West W and West GS (1894) On some algae from the West Indies. J Linn SOC 30(208): 264–280

    Google Scholar 

  • Wetzel RG and Likens GE (1990) Limnological analyses. Springer-Verlag

    Google Scholar 

  • Willey JM and Waterbury JB (1989) Chemotaxis toward nitrogenous compounds by swimming strains of marine Synechococcus spp. Appl Environ Microbiol. 55: 1888–1894

    CAS  PubMed  Google Scholar 

  • Williams PJ Le B (1981) Incorppration of microheterotrophic processes into the classical paradigm of the planktonic food web. Kiel Meeresforsch 5: 1–28

    Google Scholar 

  • Williamson CE (1995) What role does UV-B radiation play in freshwater ecosystems? Limnol Oceanogr 40 (2): 386–392

    Google Scholar 

  • Wilson WH, Carr NG and Mann NH (1996) The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH7803. J Phycol 32 506–516

    Article  CAS  Google Scholar 

  • Wood AM, Horan PK, Muirhead K, Phinney DA, Yentsch CM and Waterbury JB (1985) Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy and flow cytometry. Limnol Oceanogr 30: 1303–1315

    CAS  Google Scholar 

  • Wyman M and Fay P (1986) Underwater light climate and the growth and pigmentation of planktonic blue-green algae (Cyanobacteria) I. the influence of light quality. Proc R SOC Lond 227: 381–393

    Google Scholar 

  • Zaret M and Suffem KL (1976) Vertical migration in zooplankton as a predator avoidance mechanism. Limnol Oceanogr 21: 804–813

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Stockner, J., Callieri, C., Cronberg, G. (2000). Picoplankton and Other Non-Bloom-Forming Cyanobacteria in Lakes. In: Whitton, B.A., Potts, M. (eds) The Ecology of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/0-306-46855-7_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-46855-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4735-4

  • Online ISBN: 978-0-306-46855-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics