Skip to main content

Summary

Cyanobacteria are a taxonomically diverse, productive and biogeochemically important component of oceanic, coastaland estuarine phytoplankton communities. Recent molecular and analytical characterization of these communities, together with a growing number of cruise-based and remote-sensing surveys of the world’s ocean surface waters, indicate that cyanobacteria play a highly significant role in marine carbon and nitrogen cycling. Vast segments of the world?s ocean surface waters are nitrogen deplete and planktonic N2-fixing cyanobacteria can compete effectively in this large niche. Surfaceblooms of the filamentous diazotrophic genera Trichodesmium and Richelia (endosymbiont of the diatom Rhizosolenia) achieve magnitudes of growth in excess of hundreds of square kilometers in what are some of the most nutrient deplete, oligotrophic waters known. The N2-fixing enzyme complex, nitrogenase, is oxygen-sensitive and requires protection from ambient oxygen levels as well as from intracellular O2 evolved from photosynthetic activities of the cyanobacteria. Numerous molecular, physiological and structural adaptations ensure compatibility between an oxygenic phototrophic mode of growth and the need to fix N2. These adaptations include: spatial and temporal separation of photosynthesis and nitrogen fixation, formation of aggregates which can support O2 deplete microzones and respiratory and other enzymatic, O2 consuming mechanisms. Coccoid cyanobacteria such as Synechococcus, Synechocystis and Prochlorococcus are common and often dominant in the phytoplankton community in subsurface waters where they may account for more than 50% of the biomass. The picoplanktonic (< 5 μm) and nanoplanktonic (5 - 20μm) forms generally do not have the capacity to fix nitrogen; however, their small size, high surface to volume ratio, and ability to grow effectively in poorly illuminated, nutrient-rich deep waters ensure their access to nitrogen andother essential nutrients. Cyanobacteria that occupy and periodically dominate oligotrophic waters evolved various physiological, morphological and ecological strategies to optimize their capacities for nitrogen fixation, photosynthesis and nutrient (P, Fe) sequestration. Strategies include buoyancy regulation to ensure access to sunlight (energy), aggregation in colonies and consortia in which there are numerous interactions with an array of microheterotrophs and invertebrate grazers, close coupling of production and nutrient cycling within these communities, development of endosymbioses, intracellular nitrogen and phosphorus storage and the development of capacities for heterotrophy, photoheterotrophy, and pigment adaptation to counteract potential photooxidative conditions in surface waters. As a functional component of the phytoplankton, cyanobacteria exhibit remarkable ecophysiological flexibility and capacity for adaptation in response to anthropogenic alteration of the marine environment. In addition to their ability to thrive in oligotrophic waters, cyanobacteria can exploit nutrient-enriched estuaries and seas such as the Baltic, sometimes aspersistent nuisance blooms which may be toxic and a source of hypoxic and anoxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Antia NJ, Harrison PJ and Oliveira L (1991) The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia 30: 1–89

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA and Thingstadt F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10 257–263

    Google Scholar 

  • Beaglehole JC (ed.) (1955) The Journals of Captain James Cook on his Voyages of Discovery. Vol. 1. The Voyage of the Endeavour 1768–1771. Cambridge University Press, Cambridge

    Google Scholar 

  • Bebout BM, Paerl HW, Crocker KM and Prufert LE (1987) Diel interactions of oxygenic photosynthesis and N2 fixation (acetylene reduction) in a marine microbial mat community. Appl Environ Microbiol 53: 2353–2362

    CAS  PubMed  Google Scholar 

  • Bergman B and Carpenter El (1991) Nitrogenase confined to randomly distributed trichomes in the marine cyanobacterium Trichodesmium thiebautii. J Phycol 27: 158–165

    Article  CAS  Google Scholar 

  • Bothe H (1982) Nitrogen fixation. In: Carr N G and Whitton B A (eds) The Biology of Cyanobacteria, pp 87–104. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Booth BC (1988) Size classes and major taxonomic groups of phytoplankton at two locations in the subarctic Pacific Ocean in May and August 1984. Mar Biol 97: 275–286

    Article  Google Scholar 

  • Britschgi TB and Giovannoni SJ (1991) Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environ Microbiol 57: 1707–1713

    CAS  PubMed  Google Scholar 

  • Bruland KW, Donat JR and Hutchins DA (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol Oceanogr 36: 1555–1577

    CAS  Google Scholar 

  • Bryceson I and Fay P (1981) Nitrogen fvtation in Oscillatoria (Trichodesmium) erythraea in relation to bundle formation and trichome differentiation. Mar Biol 61: 159–166

    Article  Google Scholar 

  • Caldwell DE (1979) Associations between photosynthetic and heterotrophic prokaryotes in plankton. In: Nichols JM (ed.) Abstracts of Third International Symposium on Photosynthetic Prokaryotes

    Google Scholar 

  • Calwell DE and Caldwell SJ (1978) A Zoogloea sp. associated with blooms of Anabaenaflos-aquae. Can J Microbiol 24: 922–931

    Google Scholar 

  • Camp TR and Stein PC (1943) Velocity gradients and internal work in fluid motion. J Boston Soc Civil Eng 30: 219–237

    Google Scholar 

  • Capone DG (1983) Benthic nitrogen fixation. In: Carpenter ET and Capone DG (eds) Nitrogen in the Marine Environment, pp 105–137. Academic Press, New York

    Google Scholar 

  • Capone DG and Carpenter El (1982) Nitrogen fixation in the marine environment. Science 217: 1140–1142

    CAS  Google Scholar 

  • Capone DG, O’Neil JM, Zehr J and Carpenter EJ (1990) Basis for diel variation in nitrogenase activity in the marine planktonic Cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 56: 3532–3536

    CAS  PubMed  Google Scholar 

  • Capone DG, Zehr JP, Paerl HW, Bergman B and Carpenter ET (1997) Tichodesmium, a globally significant marine cyanobacterium. Science 276: 1221–1229.

    Article  CAS  Google Scholar 

  • Carmichael WW (1991) Toxic freshwater blue-green algae (Cyanobacteria): An overlooked health threat. Health Environ Digest 5: 1–4

    Google Scholar 

  • Carpenter El (1973) Nitrogen fixation by Oscillatoria (Trichodesmium) thiebautii in the southwestern Sargasso Sea. Deep Sea Res 20: 285–288

    Google Scholar 

  • Carpenter El (1983a) Physiology and ecology of marine plankton Oscillatoria (Trichodesmium). Mar Biol Lett 4: 69–85

    CAS  Google Scholar 

  • Carpenter El (1983b) Nitrogen fixation by marine Oscillatoria (Trichodesmium) in the world’s oceans. In: Carpenter El and Capone DG (eds) Nitrogen in the Marine Environment, pp 65–104. Academic Press, New York

    Google Scholar 

  • Carpenter EJ and Price CC (1976) Marine Oscillatoria (Trichodesmium): Explanation for aerobic nitrogen fixation without heterocysts. Science 191: 1278–1280

    CAS  PubMed  Google Scholar 

  • Carpenter El and Romans K (1991) Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean. Science 254: 1356–1358

    Google Scholar 

  • Carr NG and Whitton BA (eds) (1982) The oceanic cyanobacterial picoplankton. In: Bryant DA (ed.) The Molecular Biology of Cyanobacteria. pp 27–48. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Carr NG and Whitton BA (eds) (1982) The Biology of Cyanobacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R and Waterbury JB (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334: 340–343

    Article  Google Scholar 

  • Chróst RJ and Brzeska D (1978) Extracellular release of organic products and growth of bacteria in Anabaena cylindrica (blue-green alga) culture. Acta Microbiol Pol 27: 287–295

    PubMed  Google Scholar 

  • Church TM, Tramontano JM, Scudlark JR, Jickells TD, Tokos JJ and Knapp AM (1984) The wet deposition of trace metals to the western Atlantic Ocean at the mid-Atlantic coast and on Bermuda. Atmos Environ 18: 2657–2664

    CAS  Google Scholar 

  • Cole JJ, Lane JM, Marino R and Howarth RW (1993) Molybdenum assimilation by Cyanobacteria and phytoplankton in freshwater and salt water. Limnol Oceanogr 38: 25–35

    CAS  Google Scholar 

  • Currin CA, Paerl HW, Suba G and Alberte RS (1990) Immunofluorescence detection, and characterization of N2 fvting microorganisms from aquatic environments. Limnol Oceanogr 35:59–71

    CAS  Google Scholar 

  • D’Elia CF, Sanders JG and Boynton WR (1986) Nutrient enrichment studies in a coastal plain estuary: Phytoplankton growth in large scale, continuous cultures. Can J Fish Aquat Sci 43: 397–406

    Google Scholar 

  • Dam HG, Drapeau DT and Grenier G (1994) An improved flocculation design for use in particle aggregation experiments. Limnol Oceanogr 39: 23–729

    Google Scholar 

  • Darwin C (1839) Journal of the Researches into the Geology, and Natural History of Various Countries Visited by the H.M.S. Beagle. Hafner Publishing Co, New York (1952)

    Google Scholar 

  • Davis PG and Sieburth J McN (1982) Differentiation of phototrophic and heterotrophic nanoplankton populations in marine waters by epifluorescence microscopy. Ann Inst of OceanogrParis 58 (S): 249–260

    Google Scholar 

  • Dean DR and Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Bums RH and Evans HJ (eds) Biological nitrogen fixation, pp 763–834. Chapman & Hall, New York

    Google Scholar 

  • Dicker HJ and Smith DW (1980) Acetylene reduction (nitrogen fixation) in a Delaware, USA salt marsh. Mar Biol 57: 241–250

    Article  CAS  Google Scholar 

  • Donze W, Haveman J and Schiereck P (1972) Absence of photosystem 2 in heterocysts of the blue-green alga Anabaena. Biochim Biophys Acta 256: 157–161

    CAS  PubMed  Google Scholar 

  • Doremus C (1985) Geochemical control of dinitrogen fixation in the open ocean. Biol Oceanogr 1: 429–436

    Google Scholar 

  • Drouet F (1968) Revision of classification of Oscillatoriaceae. Monogr Acad Nat Sci Phil 15: 1–334

    Google Scholar 

  • Dubois JD and Kapustka LA (1981) Osmotic stress effects on the N2(C2H2) ASA activity of aquatic cyanobacteria. Aquat Bot 11: 11–20

    Article  CAS  Google Scholar 

  • Duce RA and Tindale NW (1991) Atmospheric transport of iron and its deposition in the ocean. Limnol Oceanogr 36: 1715–1726

    CAS  Google Scholar 

  • Dugdale RC (1967) Nutrient limitation in the sea: Dynamics, identification and significance. Limnol Oceanogr 12: 685–695

    Google Scholar 

  • Fogg, GE (1944) Growth and heterocyst production in Anabaena cylindrica Lemm. New Phytol 43: 164–175

    Google Scholar 

  • Fogg GE (1969) The physiology of an algal nuisance. Proc Roy Soc Lond B 173: 175–189

    Google Scholar 

  • Fogg GE (1974) Nitrogen fixation: In: Stewart WDP (ed.) Algal Physiology and Biochemistry, pp 560–582. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Fogg GE (1982) Marine plankton. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp 491–514. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Fogg GE, Stewart WDP, Fay P and Walsby AE (1973) The Blue-Green Algae. Academic Press, London

    Google Scholar 

  • Frémy P (1933) Les cyanophycées des côtes ďEurope. Mémoirs Soc Nat Sci Nat Math Cherbourg 41: 1–235

    Google Scholar 

  • Fulton RS and Paerl HW 1988. Effects of the blue-green alga Microcystis aeruginosa on zooplankton competitive relations. Oecologia 76 383–389

    Google Scholar 

  • Gallon JR (1989) The physiology and biochemistry of N2 fixation by nonheterocystous cyanobacteria. Phykos 28: 18–46

    CAS  Google Scholar 

  • Gallon JR (1992) Reconciling the incompatible: N2 fixation and O2. New Phytol 122:571–609

    CAS  Google Scholar 

  • Gallon JR, Hashem MA and Chaplin AE (1991) Nitrogen fixation by Oscillatoria spp. under autotrophic and photoheterotrophic conditions. J Gen Microbiol 137: 31–39

    CAS  Google Scholar 

  • Gallon JR and Stal LJ (1992) N2 fixation in non-heterocystous cyanobacteria: An overview. In: Carpenter El, Capone DG and Rueter JG (eds) Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs, pp 115–139. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Gibson CE and Smith RV (1982) Freshwater plankton. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp. 463–450. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Gieskes W and Kraay G (1986) Floristic and physiological differences between the shallow and deep nanophytoplankton community in the euphotic zone of the tropical Atlantic revealed by HPLC analysis of pigments. Mar Biol 91: 567–576

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL and Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 344: 60–63

    Google Scholar 

  • Glibert P, Conley D, Fisher T, Harding L and Malone T (1995) Dynamics of the 1990 winter/spring bloom in Chesapeake Bay. Mar Ecol Progr Ser 122 27–43

    Google Scholar 

  • Glover HE, Keller MD and Spinrad RW (1987) The effects of light quality and intensity on photosynthesis and growth of marine planktonic prokaryotic phytoplankton clones. J Exp Mar Biol Ecol 105; 137–159

    Article  Google Scholar 

  • Goericke R and Welshmeyer NA (1993a) The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep-sea Res 40 2283–2294

    Google Scholar 

  • Goericke R and Welshmeyer NA (1993b) The chlorophyll-labeling method: measuring specific rates of chlorophyll a synthesis in cultures and the open ocean. Limnol Oceanogr 38: 80–95

    CAS  Google Scholar 

  • Healy FP (1982) Phosphate. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp. 105–124. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Home AJ (1977) Nitrogen fixation — a review of this phenomenon as a polluting process. Progr Water Technol 8: 359–372

    Google Scholar 

  • Home AJ and Goldman CR (1972) Nitrogen fixation in Clear Lake, CA: 1. Seasonal variations and the role of heterocysts. Limnol Oceanogr 17:678–692

    Google Scholar 

  • Howarth RW and Cole JJ (1985) Molybdenum availability. nitrogen limitation, and phytoplankton growth in natural waters. Science 229: 653–655

    CAS  Google Scholar 

  • Howarth RW, Marino R, Lane J and Cole JJ (1988) Nitrogen fixation in freshwater, estuarine and marine ecosystems. 1. Rates and importance. Limnol Oceanogr 33: 619–687

    Google Scholar 

  • Huber AL (1986) Nitrogen fixation by Nodularia spumigena Mertens (Cyanobacteria). I. Field studies on the contribution of blooms to the nitrogen budget of the Peel-Harvey Estuary, Western Australia. Hydrobiologia 131: 193–203

    Article  CAS  Google Scholar 

  • Huang T-C, Tu J, Chow T-J and Chen T-H (1990) Circadian rhythm of the prokaryote Synechococcus sp. RF-1. Plant Physiol 92:531–533

    CAS  Google Scholar 

  • Itturiaga R and Mitchell BG (1986) Chrococcoid cyanobacteria: A significant component in the food web dynamics of the open ocean. Mar Ecol Progr Ser 28: 291–297

    Google Scholar 

  • Johnson PW and Sieburth JMcN (1979) Chrococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24: 928–935.

    Google Scholar 

  • Kahru M, Leppänen, J-M and Rud O (1993) Cyanobacterial blooms cause heating of the sea surface. Mar Ecol Progr Ser 101: 1–7

    Google Scholar 

  • Karl DM, Letelier R, Hebel DV, Bird DF and Winn CD (1992) Trichodesmium blooms and new nitrogen in the North Pacific gyre. In: Carpenter EJ, Capone DG and Rueter JG (eds.) Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs, pp. 219–238. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Karsten G (1905) Das phytoplankton des atlantischen oceans nach dem material der deutschen Tiefsee-Expedition 1898–1899. Wissenschaften Ergen. Deutschen Tiefsee-Expedition “Valdiva” 1898–1899 2: 137–219

    Google Scholar 

  • Karsten G (1907) Das indische Phytoplankton nach dem Material der deutschen Tiefsee-Expedition 1898–1899. Wissenschaften Ergen. Deutschen Tiefsee-Expedition “Valdiva” 1898–1899 2: 221–548

    Google Scholar 

  • Klemer AR and Konopka AE (1980) Causes and consequences of blue-green algal (cyanobacterial) blooms. Lake Res Manag 5: 9–19

    Google Scholar 

  • Kononen K, Kuparinen J, MäkeIä K, Laanemets J, Pavelson J and Nomann (1996) Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf of Finland, Baltic Sea. Limnol Oceanogr 41: 98–112

    CAS  Google Scholar 

  • Kucera SA (1996) Effects of small-scale chear forces on nitrogen fixing cyanobacteria. M.Sc Thesis, 129p. University of North Carolina, Chapel Hill

    Google Scholar 

  • Kuentzel EL (1969) Bacteria, carbon dioxide, and algal blooms. J Water Poll Cont Fed 41: 1737–1747

    CAS  Google Scholar 

  • Lang NJ and Fay P (1971) The heterocysts of blue-green algae II. Details of ultrastructure. Proc Roy Soc Lond B 178: 193–203

    Google Scholar 

  • Lange W (1967) Effects of carbohydrates on the symbiotic growth of the planktonic blue-green algae with bacteria. Nature 215: 1277–1278

    CAS  PubMed  Google Scholar 

  • Lange W (1971) Enhancement of algal growth in cyanophyta-bacteria systems by carbonaceous compounds. Can J Microbiol 17:303–314

    CAS  PubMed  Google Scholar 

  • Lemmemann E (1905) Die Algenflora der Sandwich-Inseln. Ergebnisse einer Reise nach dem Pacific, H. Schauinsland 1996/97. Englers Bot J 34 607–663

    Google Scholar 

  • León C, Kumazawa S and Mitsui A (1986) Cyclic appearance of aerobic nitrogenase activity during synchronous growth of unicellular cyanobacteria Curr Microbiol 13: 149–153

    Google Scholar 

  • LeRudilier DT, Bernard T, Goas G and Hamelin J (1984) Osmoregulation in Klebsiellu pneumoniae: Enhancement of anaerobic growth and nitrogen fixation under stress by proline betaine, m-butyrobetaine, and other related compounds. Can J Microbiol 30: 299–305

    Google Scholar 

  • Li WKW (1986) Experimental approaches to field measurements: methods and interpretations. In: Platt T and Li WW (eds.), Photosynthetic Picoplankton, pp 251–286. Can Bull Fish Aquat Sci Vol 214, Ottawa, Canada

    Google Scholar 

  • Madden CJ and Day JW (1992) Induced turbulence in rotating bottles affects phytoplankton productivity measurements in turbid waters. J Plankt Res 14 1171–1191

    Google Scholar 

  • Mague TH, Mague FC and Holm-Hansen O (1977) Physiology and chemical composition of nitrogen-fixing phytoplankton in the central North Pacific Ocean. Mar Biol 41: 213–227

    Article  CAS  Google Scholar 

  • Mague TH, Weare NM and Holm-Hansen O (1974) Nitrogen fixation in the North Pacific Ocean. Mar Biol 24: 109–119

    Article  CAS  Google Scholar 

  • Martin JH, Fitzwater SE and Gordon RM (1990) Iron deficiency limits phytoplankton growth in Antarctic waters, Globa Biogeo Cycl 4: 5–12

    CAS  Google Scholar 

  • Martin JH and 43 co-authors (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 28: 159–182

    Google Scholar 

  • Martinez L, Silver MW, King JM and Alldredge AL (1983) Nitrogen fixation by floating datm mats: A sources of new nitrogen to oligotrophic ocean waters. Science 221: 152–154

    CAS  Google Scholar 

  • Millie DF, Paerl HW and Hurley J (1993) Microalgal pigment assessments using high performance liquid chromatography: a synopsis of organismal and ecological applications. Can J Fish Aquat Sci 50 2513–2527

    CAS  Google Scholar 

  • Mitsui A, Kumazawa S, Takahashi S., Ikemoto A, Cao S and Arai T (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow phototrophically. Nature 323: 720–722

    Article  CAS  Google Scholar 

  • Murphy TO, Lean DRS and Nalewajko C (1976) Blue-green algae: Their excretion of selective chelators enables them to dominate other algae. Science 221: 152–154

    Google Scholar 

  • Neilson AH and Lewin RA (1974) The uptake and utilization of organic carbon by algae: An essay in comparative biochemistry. Phycologia 13: 227–264

    CAS  Google Scholar 

  • Niemi A (1979) Blue-green algal blooms and N:P ratio in the Baltic Sea. Acta Bot Fenn 110 57–61

    CAS  Google Scholar 

  • Nixon SW (1986) Nutrient dynamics and the productivity of marine coastal waters. In: Halwagy R, Clayton D and Behbehani M (eds), Marine Environment and Pollution, pp 97–115. The Alden Press, Oxford

    Google Scholar 

  • Nixon SW (1995) Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41: 199–219

    Google Scholar 

  • Ohki K and Fujita Y (1988) Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium Trichodesmiumspp. grown under artificial conditions. Mar Biol 98: 111–114

    Article  CAS  Google Scholar 

  • Olson R, Vaulot R and Chisholm S (1985) Marine phytoplankton distributions measured using shipboard flow cytometry. DeepSea Res 32: 1273–1280

    Google Scholar 

  • Ostenfeld CH and Schmidt J (1901) Plankton fra det Rrde hav og Adenbugten, Vidensk Meddel Naturh Forening i Kbhvn. 141: 141–182

    Google Scholar 

  • Paerl HW (1978) Nannoplankton vs. netplankton photosynthetic and heterotrophic activities in Fijian waters of the South Pacific Ocean. Roy Soc New Zeal Bull 17: 211–221

    CAS  Google Scholar 

  • Paerl HW (1984) Transfer of N2 and CO2 fixation products from Anabaena oscillarioides to associated bacteria during inorganic carbon sufficiency and deficiency. J. Phycol 20: 600–608

    Article  CAS  Google Scholar 

  • Paerl HW(1988) Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnol Oceanogr 33: 895–905

    Google Scholar 

  • Paerl HW (1990) Physiological ecology and regulation of N2 fixation in natural waters. Adv Microb Ecol 11: 305–344

    CAS  Google Scholar 

  • Paerl HW (1991) Ecophysiological and trophic implications of light-stimulated amino acid utilization in marine picoplankton. Appl Environ Microbiol 57: 473–479

    CAS  PubMed  Google Scholar 

  • Paerl HW (1992) Cyanobacterial epi-and endobiotic interactions In: Reisser W (ed.) Algal Symbioses, pp 537–566. Biopress Ltd, Bristol, UK

    Google Scholar 

  • Paerl HW (1994) Spatial segregation of CO2 fixation in Trichodesmium sp.: Linkage to N2 fixation potential. J Phycol 30 790–799

    Article  Google Scholar 

  • Paerl HW (1996a) Microscale physiological and ecological studies of aquatic cyanobacteria: Macroscale implications. Microsc Res Tech 33: 47–72

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW (1996b) A comparison of cyanobacterial bloom dynamics in freshwater, estaurine and marine environments. Phycologia 35: 25–35

    Google Scholar 

  • Paerl HW (1997) Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as ìnewî nitrogen and other nutrient sources. Limnol Oceanogr 42:1154–1165

    CAS  Google Scholar 

  • Paerl HW and Bebout BM (1988) Direct measurement of O2-depleted microzones in marine Oscillatoria: Relation to N2 fixation. Science 242: 441–445

    Google Scholar 

  • Paerl HW, Bebout BM and Prufert LE (1988) Naturally-occumng patterns of oxygenic photosynthesis and N2 fixation in a marine microbial mat: Physiological and ecological ramifications. In: Cohen Y and Rosenberg E (eds), Microbial Mats, pp 326–341. ASM Publications, Washington DC

    Google Scholar 

  • Paerl HW, Bebout BM and Prufert LE (1989b) Bacterial associations with marine Oscillatoria sp. (Trichodesmium sp.) populations: Ecophysiological implications. J Phycol 25: 773–784

    Google Scholar 

  • Paerl HW and Bland PT (1982) Localized tetrazolium reduction in relation to N2 fixation, CO2 fixation and H2 uptake in aquatic filamentous cyanobacteria. Appl Environ Microbio l43: 218–226

    Google Scholar 

  • Paerl HW, Bland PT, Tucker J and Blackwell J (1983) The effects of salinity on the potential of a blue-green algal (Microcystis aeruginosa) bloom in the Neuse River Estuary, NC. NC Sea Grant Rep 83-1, 84 p

    Google Scholar 

  • Paerl HW and Carlton RG (1988) Control of nitrogen fixation by surface-associated microzones. Nature 332: 260–262

    Article  CAS  Google Scholar 

  • Paerl HW, Crocker KM and Prufert LE (1987) Limitation of N2 fixation in coastal marine waters: Relative importance of molybdenum, iron, phosphorus and organic matter availability. Limno Oceanogr 32 525–536

    CAS  Google Scholar 

  • Paerl HW and Gallucci KK (1985) Role of chemotaxis in establishing a specific nitrogen-fixing cyanobacterial-bacterial association. Science 227: 647–649

    CAS  Google Scholar 

  • Paerl HW and Kellar PE (1978) Significance of bacterial-Anabaena (Cyanophyceae) associations with respect to N2 fixation in freshwater. J Phycol 14: 254–260

    Google Scholar 

  • Paerl HW and Millie DW (1996) Physiological ecology of toxic cyanobacteria Phycologia 35: 169–167

    Google Scholar 

  • Paerl HW and Pinckney JL (1996) Microbial consortia: Their role in aquatic production and biogeochemical cycling. Microb Ecol 31: 225–247

    Article  PubMed  Google Scholar 

  • Paerl HW, Pinckney JL and Kucera SA (1995) Clarification of the structural and functional roles of heterocysts and anoxic microzones in the control of pelagic nitrogen fixation. Limnol Oceanogr 40: 634–638

    CAS  Google Scholar 

  • Paerl HW, Priscu JC and Brawner DL (1989a) Immunochemical localization of nitrogenase in marine Trichodesmium aggregates: Relationship to N2 fixation potential. Appl Environ Microbiol 55: 2965–2975

    CAS  PubMed  Google Scholar 

  • Paerl HW and Prufert LE (1987) Oxygen-poor microzones as potential sites of microbial N2 fixation in nitrogen-depleted aerobic marine waters. Appl Environ Microbiol 53: 1078–1087

    CAS  PubMed  Google Scholar 

  • Paerl HW, Prufert LE and Ambrose WW (1991) Contemporaneous N2 fixation and oxygenic photosynthesis in the non-heterocystous mat-forming cyanobacterium Lyngbya aestuarii. Appl Environ Microbiol 57: 3086–3092

    CAS  PubMed  Google Scholar 

  • Paerl HW, Prufert-Bebout LE and Guo C (1994) Iron-stimulated N2 fixation and growth in natural and cultured populations of the planktonic marine cyanobacterium Trichodesmium. Appl Environ Microbiol 60: 1044–1047

    CAS  PubMed  Google Scholar 

  • Paerl HW and Tucker C (1995) Ecology of blue-green algae in aquaculture ponds. J World Aqua SOC 26: 1–53

    Google Scholar 

  • Paerl HW and Ustach JF (1982) Blue-green algal scums: an explanation for their occurrence during freshwater blooms. Limnol Oceanogr 28: 847–857

    Google Scholar 

  • Paerl HW, Webb KL and Wiebe W (1981) Nitrogen fixation in waters. In: Broughton WJ (ed.), Nitrogen Fixation. Volume 1: Ecology, pp 193–240. Oxford Publications, Oxford

    Google Scholar 

  • Paulsen, DM, Paerl HW and Bishop PE (1991) Evidence that molybdenumdependent nitrogen fixation is not limited by high sulfate in marine environments. Limnol Oceanogr 36 1325–1334

    CAS  Google Scholar 

  • Phlips El and Zeman C (1990) Photosynthesis, growth and nitrogen fixation by epiphytic forms of filamentous cyanobacteria from pelagic Sargassum. Bull mar Sci 47: 613–621

    Google Scholar 

  • Pinckney JL, Millie DF, Howe K, Paerl HW and Hurley J (1996) Flow scintillation counting of 14C-labeled microalgal photosynthetic pigments. J Plankton Res 18(10): 1867–1880

    CAS  Google Scholar 

  • Pinckney JL, Paerl HW, Harrington MB, Howe KE (1998) Annual cycles of phytoplankton community structure and bloom dynamics in the Neuse River Estuary, NC (USA). Mar Biol 131:371–382

    Article  Google Scholar 

  • Platt T and Li WKW, Eds. (1986) Photosynthetic Picoplankton. Can Bull Fish Aqua Sci 214: 1–583, Ottawa, Canada

    Google Scholar 

  • Platt T, Subba Rao DV and Irwin B (1983) Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301: 702–704

    Article  CAS  Google Scholar 

  • Porter KG and Orcutt JD (1980) Nutritional adequacy. manageability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. Am Soc Limnol Oceanogr Spec Symp Vol3: 268–281

    Google Scholar 

  • Potts M (1980) Blue-green algae (cyanophyta) in marine coastal environment of the Sinai Peninsula: distribution, zonation, stratification and taxonomic diversity. Phycologia 19: 60–73

    Google Scholar 

  • Potts M and Whitton BA (1979a) pH and Eh on Aldabra Atoll. 1. Comparison of marine and freshwater environments. Hydrobiologia 67: 11–17

    Google Scholar 

  • Potts M and Whitton BA (1979b) pH and Eh on Aldabra Atoll.2. Intertidal photosynthetic microbial communities showing zonation. Hydrobiologia 67: 99–105

    Google Scholar 

  • Prezelin BB, Glover HE, Ver Hoven B, Steinberg D, Matlick HA, Schofield 0, Nelson N, Wyman M and Campbell L (1989) Blue-green light effects on light-limited rates of photosynthesis: Relationship to pigmentation and productivity estimates for Synechococcus populations from the Sargasso Sea. Mar Ecol Progr Ser 54: 121–136

    CAS  Google Scholar 

  • Prufert LE, Paerl HW and Lassen C (1993) Growth, nitrogen fixation and spectral attenuation in cultivated Trichodesmium. Appl Environ Microbiol 59: 1350–1359

    Google Scholar 

  • Redalje D (1993) The labeled chlorophyll a technique for determining photoautotrophic carbon-specific growth rates and biomass. In: Kemp P (ed.) Handbook of Methods in Aquatic Microbial Ecology, pp 563–572. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Reed RH and Stewart WDP (1985) Osmotic adjustment and organic solute accumulation in unicellular cyanobacteria from planktonic and marine habitats. Mar Biol 88: 1–9

    Article  CAS  Google Scholar 

  • Reynolds CS (1987) Cyanobacterial water blooms. Adv Bot Res 13: 67–143

    Google Scholar 

  • Reynolds CS and Walsby AE (1975) Water blooms. Biol Rev 50 437–481

    CAS  Google Scholar 

  • Romans KM, Carpenter El and Bergman B (1994) Buoyancy regulation in the colonial diazotrophic cyanobacterium Trichodesmium tenue: ultrastructure and storage of carbohydrate, polyphosphate and nitrogen. J Phycol 30 935–942

    Article  Google Scholar 

  • Rosenberg G and Paerl HW (1980) Nitrogen fixation by blue-green algae associated with the siphonous green seaweed Codium decorticatum: Effects on ammonium uptake. Mar Biol 61: 151–158

    Google Scholar 

  • Rowan K (1989) Photosynthetic Pigments of Algae. Cambridge University Press, New York, 343 p

    Google Scholar 

  • Rueter JG, Hutchins DA, Smith RW and Unsworth NL (1992) Iron nutrition in Trichodesmium. In: Carpenter EJ, Capone DG and Rueter JG (eds) Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs, pp 289–306. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Sellner K (1997) Physiology, ecology, and toxic properties of marine cyanobacterial blooms. Limnol Oceanogr 42: 1089–1104

    Google Scholar 

  • Smith SV (1984) Phosphorus vs. nitrogen limitation in the marine environment. Limnol Oceanogr 29: 1149–1160

    CAS  Google Scholar 

  • Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671

    Google Scholar 

  • Smith VH (1990) Nitrogen, phosphorus, and nitrogen fixation in lacustrine and estuarine ecosystems. Limnol Oceanogr 35: 1852–1859

    CAS  Google Scholar 

  • Sørenssen F and Sahlsten E (1987) Nitrogen dynamics of a cyanobacterial bloom in the Baltic Sea: New versus regenerated production. Mar Ecol Progr Ser 37:277–284

    Google Scholar 

  • Soumia A (1970) Les cyanophycùes dans le plancton marin. Ann Biol 9: 63–66

    Google Scholar 

  • Stal LJ and Bergman B (1990) Immunological characterization of nitrogenase in the filamentous non-heterocystous cyanobacterium Oscillatoria limosa. Panta 182 287–291

    CAS  Google Scholar 

  • Stal LJ and Krumbein WE (1985) Nitrogenase activity in the non-heterocystous cyanobacterium Oscillatoria sp. grown under alternating light-darkcycles. Arch Microbiol 143: 67–71

    CAS  Google Scholar 

  • Stewart WDP (1973) Nitrogen fixation: In: Carr NG and Whitton BA (eds) The Biology of Blue-Green Algae, pp 260–278, Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Takeda S, Kamatani A and Kawanobe K (1995) Effects of nitrogen and iron enrichments on phytoplankton communities in the northwest Indian Ocean. Mar Chem 50: 229–241

    CAS  Google Scholar 

  • Taylor BF, Lee CC and Bunt JS (1973) Nitrogen fixation associated with the marine blue-green alga Trichodesmium as measured by the acetylene reduction technique. Arch Microbiol 88: 205–212

    CAS  Google Scholar 

  • Taylor DL (1983) Symbioses. In: Carpenter El and Capone DG (eds) Nitrogen in the Marine Environment, pp 679–697. Academic Press, New York

    Google Scholar 

  • Taylor GI (1936) Fluid friction between rotating cylinders. Part I. Toque measurements. Proc Roy Soc Lond A. 157: 546–564

    Google Scholar 

  • Thomas JS, Apte K and Reddy BR (1988) Sodium metabolism in cyanobacterial nitrogen fixation and salt tolerance. In: Bothe H, de Bruyn FJ and Newton WE (eds) Nitrogen Fixation: Hundred Years After, pp 195–201. Gustav Fischer, Stuttgart

    Google Scholar 

  • Thomas WH and Gibson CH (1990) Effects of small-scale turbulence on microalgae. J Appl Phycol 2: 71–77

    Article  Google Scholar 

  • Veldhuis, MJW and Kraay GW (1990) Vertical distribution and pigment composition of a picoplanktonic prochlorophyte in the subtropical North Atlantic: A combined study of HPLC-analysis of pigments and flow cpometry. Mar Ecol Prog Ser 68: 121–127

    CAS  Google Scholar 

  • Villareal TA (1992) Marine nitrogen fixing diatom-cyanobacterial symbioses. In: Carpenter El, Capone DG and Rueter JG (eds) Marine Pelagic Cyanobacteria: Tricfiodesmium and other Diazotrophs, pp 163–175. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Villbrandt M, Stal LJ and Krumbein WE (1990) Interactions between nitrogen fixation and oxygenic photosynthesis in a marine cyanobacterial mat. FEMS Microbial Ecol 74: 59–72

    CAS  Google Scholar 

  • Walsby AE (1972) Structure and function of gas vacuoles. Bacteriol Rev 36 1–32

    CAS  PubMed  Google Scholar 

  • Walsby AE (1974) The extracellular products of Anabaena cylindrica Lemm. I. Isolation of macromolecular pigment-peptide complex. Brit Phyc J 9: 371–381

    Google Scholar 

  • Waterbury, JB, Watson S, Guillard RRL and Brand LE (1979) Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277: 293–294

    Article  Google Scholar 

  • Waterbury JB, Watson SW and Valois FW (1988) Temporal separation of photosynthesis and dinitrogen fixation in the marine unicellular cyanobacterium Erythrospira marina. Eos 69: 1089

    Google Scholar 

  • Watt WD (1971) Measuring the primary production rates of individual phytoplankton species in natural mixed populations. Deep-sea Res 18: 329–339

    Google Scholar 

  • Whitton BA (1973) Interactions with other organisms. In: Carr NG and Whitton BA (eds) The Biology of Blue-Green Algae, pp 415–432. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Whitton BA and Potts MA (1982) Marine littoral. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp 515–542. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wolk CP (1982) Heterocysts. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp 359–386. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wolk CP, Ernst A and Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed.) The Molecular Biology of Cyanobacteria, pp 69–823. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Wulff F (1988) Understanding the Baltic Sea: Systsems ecology in theory and practice. In: Drepper WS (ed.) Ecodynamics, pp. 113–126, Springer, New York

    Google Scholar 

  • Wyman M, Zehr JP and Wyman DG (1966) Temporal variability in nitrogenase gene expression in natural populations of the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 62: 1073–1075

    Google Scholar 

  • Yates MG (1980) The biochemistry of nitrogen fixation. In: Miflin BJ (ed.) The Biochemistry of Plants. Vol 5, Academic Press, NY

    Google Scholar 

  • Zehr, JP and McReynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium tfiiebuutii. Appl Environ Microbiol 55: 522–2526

    Google Scholar 

  • Zehr JP, Wyman M, Miller V, Duguay L and Capone DG (1993) Modification of the Fe protein of nitrogenase in natural populations of Trichodesmium tfiiebuutii. Appl Environ Microbiol 59: 669–676

    CAS  PubMed  Google Scholar 

  • Zhuang G, Yi Z and Wallace (1995) Iron(II) in rainwater, snow, and surface seawater from a coastal environment. Mar Chem 50: 41–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Paerl, H.W. (2000). Marine Plankton. In: Whitton, B.A., Potts, M. (eds) The Ecology of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/0-306-46855-7_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-46855-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4735-4

  • Online ISBN: 978-0-306-46855-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics