Skip to main content

Cyanobacteria in Geothermal Habitats

  • Chapter
The Ecology of Cyanobacteria

Summary

Recent advances in molecular biology enabled a much more detailed view of cyanobacteria that inhabit well-studied hot spring habitats. What seemed on the basis of microscopy and culture methods to be a relatively simple story became one which ismore complex. yet more ordered. For example. 16S rRNA studies of one well-studied Yellowstonehot spring cyanobacterial mat. often thought to be constructed by a single cosmopolitan Synechococcus species. revealed many cyanobacterial populations. most probably Synechococcus spp., whose genetic diversity is considerable.Some closely related populations exhibited orderly distributions along thermal and vertical gradients. and provided evidence that “speciation” of thermophilic cyanobacteria may have resulted. in part, from adaptive radiation of specialized ecotypes. These results correspond with previous descriptions of Synechococcus temperature “strains” cultivated from a well-studied Oregon hot spring mat, raising interesting questions which may be answered through molecular analysis. For example, are the same cyanobacteria found in geographically isolated springs, or does limited dispersal also cause divergence ofcyanobacteria with subsequent adaptive radiations in independent lineages? Advances in microelectrode technology provided detailed views of the vertical distribution and dynamics of light, oxygen and sulfide within the photic zone in such mats, which may range from ~0.5 mm to > 1 cm in thickness. These methods increased our knowledge of diel chemical changes within the mats, including the basis for dynamic migrations of motile cyanobacteria. Microelectrode studies ofone Yellowstone mat provided additional evidence for specialization of Synechococcus populations, and led to anew view of oxygenic photosynthesis in such habitats. Intensive localized photosynthesis strongly influences microenvironmental chemistry, whichin turnenhances photorespiration. While very active, these Synechococcus populations partition the majority ofphotosynthate into polyglucose, as opposed to macromolecules needed for growth. Photoexcretion of glycolate and dark fermentation of polyglucose result in a diel cross feeding of most of the fixed carbon to heterotrophs. Thorough investigation of a few hot spring systems, using both contemporary and traditional methods, is providing a more sophisticated view of the biodiversity, ecology and evolution of thermophilic cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson KL, Tayne TA and Ward DM (1987) Formation and fate of fermentation products in hot spring cyanobacterial mats. Appl Environ Microbiol 53: 2343–2352

    CAS  PubMed  Google Scholar 

  • Awramik SM and Vanyo JP (1986) Heliotropism in modem stromatolites. Science 231: 1279–1281

    Google Scholar 

  • Bateson MM and Ward DM (1988) Photoexcretion and consumption of glycolate in a hot spring cyanobacterial mat. Appl Environ Microbiol 54: 1738–1743.

    CAS  PubMed  Google Scholar 

  • Bauld J and Brock TD (1974) Algal excretion and bacterial assimilation in hot spring algal mats. J Phycol 10: 101–106

    Google Scholar 

  • Bebout BM and Garcia-Pichel F (1995) UVB-induced vertical migration of cyanobacteria in a microbial mat. Appl Environ Microbiol 61: 4215–4222

    CAS  Google Scholar 

  • Brock TD (1967) Microorganisms adapted to high temperatures. Nature 214 882–885

    CAS  PubMed  Google Scholar 

  • Brock TD (1973) Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications, Science 179: 480–483

    CAS  PubMed  Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer-Verlag, Berlin.

    Google Scholar 

  • Brock TD and Brock ML (1968) Measurement of steady-state growth rates of a thermophilic alga directly in nature. J Bacteriol 95: 811–815

    CAS  PubMed  Google Scholar 

  • Castenholz RW (1968) The behavior of Oscillatoria terebriformis in hot springs. J Phycol 4: 132–139

    Google Scholar 

  • Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33: 476–504

    CAS  PubMed  Google Scholar 

  • Castenholz RW (1973a) Ecology of blue-green algae in hot springs. In: Carr NG and Whitton BA (eds) The Biology of Blue-green Algae, pp 379–414. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Castenholz RW (1973b) The possible use of sulfide by the filamentous phototrophic bacteria of hot springs. Limnol Oceanogr 18: 863–867

    CAS  Google Scholar 

  • Castenholz RW (1976) The effect of sulfide on the bluegreen algae of hot springs. I. New Zealand and Iceland. J Phycol 12: 54–68

    CAS  Google Scholar 

  • Castenholz RW (1977) The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microbial Ecol3: 79–105

    Google Scholar 

  • Castenholz RW (1978) The biogeography of hot spring algae through enrichment cultures. Mitt Intemat Verein Limnol 21: 296–315

    Google Scholar 

  • Castenholz RW (1981) Isolation and cultivation of thermophilic cyanobacteria. In: Starr MP, Stolp H, Truper HG, Balows A and Schlegel HG (eds) The Prokaryotes: a handbook on habitats, isolation and identification of bacteria, pp 236–246. Springer-Verlag, Berlin

    Google Scholar 

  • Castenholz RW (1984) Composition of hot spring microbial mats: a summary. In: Cohen Y, Castenholz RW and Halvorson H (eds) Microbial Mats: Stromatolites, pp 101–119. Alan R. Liss, NY

    Google Scholar 

  • Castenholz, RW (1992) Species usage, concept, and evolution in the cyanobacteria (blue-green algae). J Phycol 28: 737–745

    Article  Google Scholar 

  • Castenholz, RW (1996) Endemism and biodiversity of thermophilic cyanobacteria. Nova Hedwigia Beih, 112 33–47

    Google Scholar 

  • Castenholz RW and Utkilen HC (1984) Physiology of sulfide tolerance in a thermophilic cyanobacterium. Arch Microbiol 138:306–309

    CAS  Google Scholar 

  • Castenholz RW, Jørgensen BB, D’Amelio E and Bauld J (1991) Photosynthetic and behavioral versatility of the cyanobacterium Oscillatoria boryana in a sulfide-rich microbial mat. FEMS Microbial Ecol 86: 43–58

    CAS  Google Scholar 

  • Cohen Y, Jørgensen BB, Revsbeck NP, and Poplawski R (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl Environ Microbiol 51: 398–407

    CAS  PubMed  Google Scholar 

  • DesMarais DJ, Bauld J, Palmisano AC Summons RE and Ward DM (1992) The biogeochemistry of carbon in modem microbial mats. In: Schopf, JW and Klein C (eds) The Proterozoic Biosphere: A Multidisciplinary Study, pp 299–308. Cambridge University Press, Cambridge

    Google Scholar 

  • Dobson G, Ward DM, Robinson NR and Eglinton G (1988) Biogeochemistry of hot spring environments: free lipids of a cyanobacterial mat. Chem Geol 68: 155–179

    Article  CAS  Google Scholar 

  • Doemel WN and Brock TD (1977) Structure, growth, and decomposition of laminated algal-bacterial mats in alkaline hot springs. Appl Environ Microbiol 34 433–452

    PubMed  Google Scholar 

  • Eglinton G (1981) Acceptance speech for the Alfred E. Treibs Award. Geochim Cosmochim Acta 46: 1139–1140

    Google Scholar 

  • Ferris MJ, Muyzer G and Ward DM (1996a) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62: 340–346

    CAS  PubMed  Google Scholar 

  • Ferris MJ, Nold SC, Revsbech NP and Ward DM (1997) Population structure and physiological changes within a hot spring microbial mat community following disturbance. Appl Environ Microbiol 63: 1367–1374

    CAS  PubMed  Google Scholar 

  • Ferris MJ, Ruff-Roberts AL, Kopczynski ED, Bateson MM and Ward DM (1996b) Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl Environ Microbiol 62: 1045–1050

    CAS  PubMed  Google Scholar 

  • Ferris MJ and Ward DM (1997) Seasonal distributions of 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63: 1375–1381

    CAS  PubMed  Google Scholar 

  • Fuqua C, Winans SC and Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176: 269–275

    CAS  PubMed  Google Scholar 

  • Garcia-Pichel F and Castenholz RW (1990) Comparative anoxygenic photosynthetic capacity in 7 strains of a thermophilic cyanobacterium. Arch Microbiol 153: 344–351

    Article  CAS  Google Scholar 

  • Garcia-Pichel F and Castenholz RW (1994) On the significance of solar ultraviolet radiation for the ecology of microbial mats. In: Stal L and Caumette P (eds) Microbial Mats, pp 77–84. NATO ASI Series, Vol G35, Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  • Garcia-Pichel F, Mechling M and Castenholz RW (1994) Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl Environ Microbiol 60:1500–1511

    PubMed  Google Scholar 

  • Giovannoni SJ, Revsbech NP, Ward DM, and Castenholz RW (1987) Obligately phototrophic Chloroflexus: primary production in anaerobic hot spring microbial mats. Arch Microbiol 147:80–89

    CAS  Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Lane DJ and Pace, NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170 3584–3592.

    CAS  PubMed  Google Scholar 

  • Hader D-P (1984) Effects of W-B on motility and photoorientation in the cyanobacterium, Phormidium uncinatum Arch Microbiol 140 34–39

    Google Scholar 

  • Jorgensen BB and Nelson DC (1988) Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland. Microb Ecol 16: 133–147

    Google Scholar 

  • Jorgensen BB, Castenholz RW and Pierson BK (1992) The microenvironment within modem microbial mats. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere: A Multidisciplinary Study, pp 271–278. Cambridge University Press, Cambridge

    Google Scholar 

  • Kallas T and Castenholz RW (1982a) Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. during exposure to growth-inhibiting low pH. J Bacteriol 149: 229–236

    CAS  PubMed  Google Scholar 

  • Kallas T and Castenholz RW (1982b) Rapid transient growth at low pH in the cyanobacterium Synechococcus sp. J Bacteriol 149: 237–246

    CAS  PubMed  Google Scholar 

  • Konopka A (1992) Accumulation and utilization of polysaccharide by hot-spring phototrophs during a light-dark transition. FEMS Microb Ecol 102 27–32.

    CAS  Google Scholar 

  • Kopczynski ED, Bateson MM and Ward DM (1994) Recognition of chimeric small-subunit ribosomal RNA sequences composed of genes from uncultivated microorganisms. Appl Environ Microbiol 60: 746–748

    CAS  PubMed  Google Scholar 

  • Madigan MT and Brock TD (1976) Quantitative estimation of the bacteriochlorophyll c in the presence of chlorophyll a in aquatic environments. Limnol Oceanogr 21: 462–467

    CAS  Google Scholar 

  • Madigan MT and Brock TD (1977) Adaptation of hot spring phototrophs to reduced light intensity. Arch Microbiol 113: 111–120

    Article  CAS  PubMed  Google Scholar 

  • Mariner RH, Rapp JB, Willey LM, and Presser TM (1974) The chemical composition and estimated minimum thermal reservoir temperatures of selected hot springs in Oregon, 27 pp, U.S. Geol. Survey, Open File Report, March 1994, Menlo Park, California.

    Google Scholar 

  • Mayr E. (1982) The growth of biological thought: diversity, evolution, and inheritance. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Meeks JC and Castenholz RW (1971) Growth and photosynthesis in an extreme thermophile, Synechococcus lividus (Cyanophyta). Arch Mikrobiol 78: 25–41

    Article  CAS  PubMed  Google Scholar 

  • Miller SR, Wingard CE and Castenholz RW (1998) Effects of visible light and W radiation on photosynthesis in a population of a hot spring cyanobacterium, a Synechococcus sp., subjected to high temperature stress. Appl Environ Microbiol 64: 3893–3899

    CAS  PubMed  Google Scholar 

  • Muyzer G, De Waal EC and Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700.

    CAS  PubMed  Google Scholar 

  • Nold SC and Ward DM (1996) Photosynthate partitioning and fermentation in hot spring microbial mat communities. Appl Environ Microbiol 62: 4598–4607

    CAS  Google Scholar 

  • Peary JA and Castenholz RW (1964) Temperature strains of a thermophilic blue-green alga. Nature (London) 202: 720–721

    Google Scholar 

  • Pierson BK, Sands VM and Frederick JL. (1990) Spectral irradiance and distribution of pigments in a highly layered marine microbial mat. Appl Environ Microbiol 56: 2327–2340

    CAS  PubMed  Google Scholar 

  • Rainey FA, Ward N, Sly LI and Stackebrandt E (1994) Dependence of the taxonomic composition of clone libraries for PCR-amplified naturally occurring 16S rDNA on the primer pair and the cloning system used. Experientia 50 789–801

    Article  Google Scholar 

  • Ramsing NB, Ferris MJ and Ward DM (1997) Light-induced motility of thermophilic Synechococcus isolates from Octopus Spring, Yellowstone National Park Appl Environ Microbiol 63:2347–2354

    CAS  PubMed  Google Scholar 

  • Revsbech NP and Ward DM (1984a) Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl Environ Microbiol 48: 270–275

    CAS  PubMed  Google Scholar 

  • Revsbech NP and Ward DM (1984b) Microprofiles of dissolved substances and photosynthesis in microbial mats measured with microelectrodes. In: Cohen Y, Castenholz RW and Halvorson HO (eds) Microbial Mats: Stromatolites, pp 174–188. A.R. Liss, Inc, NY

    Google Scholar 

  • Reysenbach AL, Giver LJ, Wiskham GS and Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58: 3417–3418

    CAS  PubMed  Google Scholar 

  • Richardson LL and Castenholz RW (1987a) Enhanced survival of the cyanobacterium Oscillatoria terebriformis in darkness under anaerobic conditions. Appl Environ Microbiol 53: 2151–2158

    CAS  PubMed  Google Scholar 

  • Richardson L and Castenholz RW (1987b) Diel vertical movements of the cyanobacterium Oscillatoria terebriformis in a sulfide-rich hot spring microbial mat. Appl Environ Microbiol 53: 2151–2158

    CAS  PubMed  Google Scholar 

  • Robison-Cox J, Bateson MM and Ward DM (1995) Evaluation of nearest-neighbor methods of detection of chimeric small-subunit rRNA sequences. Appl Environ Microbiol 61: 1240–1245

    CAS  PubMed  Google Scholar 

  • Ruby EG and Asato LM (1993) Growth and flagellation of Vibrio fischeri during initiation of the spiolid squid light organ symbiosis. Arch Microbiol 159: 160–167

    Article  CAS  PubMed  Google Scholar 

  • Ruff-Roberts AL, Kuenen JG and Ward DM (1994) Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats. Appl Environ Microbiol 60 697–704

    CAS  PubMed  Google Scholar 

  • Sandbeck KA and Ward DM (1981) Fate of immediate methane precursors in low sulfate hot spring algal-bacterial mats. Appl Environ Microbiol 41: 775–782

    CAS  PubMed  Google Scholar 

  • Sheridan RP (1976) Sun-shade ecotypes of bluegreen algae in a hot spring. J Phycol 12:279–285

    Google Scholar 

  • Sheridan RP (1979) Seasonal variation in sun-shade ecotypes of Plectonema notatum (Cyanophyta). J Phycol 15:223–226

    Article  Google Scholar 

  • Shiea J, Brassell S and Ward DM (1990) Mid-chain branched mono-and dimethylalkanes in hot spring cyanobacterial mats: a direct biogenic source for branched alkanes in ancient sediments. Org Geochem 15: 223–231

    Article  CAS  Google Scholar 

  • Shiea J, Brassell S and Ward DM (1991) Comparative analysis of free lipids in hot spring cyanobacterial and anoxygenic photosynthetic bacterial mats. Org Geochem 17: 309–319

    Article  CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M and Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev 35: 171–205

    CAS  PubMed  Google Scholar 

  • Stewart WDP (1970) Nitrogen fixation by blue-green algae in Yellowstone thermal areas. Phycologia 9: 261–268

    CAS  Google Scholar 

  • Suzuki MT and Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62 625–630

    CAS  PubMed  Google Scholar 

  • Teiser MLO (1993) Extracellular low molecular weight organic compounds produced by Synechococcus sp. and their roles in the food web of alkaline hot spring microbial mat communities. PhD thesis, University of Oregon, Eugene, 197 pp

    Google Scholar 

  • Vanyo JP, Hutchinson RA and Awramik SM (1986) Helotropism in microbial stromatolitic growths at Yellowstone National Park geophysical inferences. EOS 67: 153–156

    Google Scholar 

  • Walter MR, Bauld J and Brock TD (1972) Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of Yellowstone National Park. Science 178: 402–405

    Google Scholar 

  • Ward DM, Beck E, Revsbech NP, Sandbeck KA and Winfrey MR (1984) Decomposition of hot spring microbial mats. In: Cohen Y, Castenholz RW and Halvorson, HO (eds) Microbial mats: Stromatolites, pp 191–214. A.R. Liss, Inc, NY

    Google Scholar 

  • Ward DM and Olson JG (1980) Terminal processes in the anaerobic degradation of an algal-bacterial mat in a high sulfate hot spring. Appl Environ Microbiol 40 67–74

    CAS  PubMed  Google Scholar 

  • Ward DM, Shiea J, Zeng YB, Dobson G, Brassell S and Eglinton, G. (1989b) Lipid biochemical markers and the composition of microbial mats. In: Cohen Y and Rosenburg E (eds.) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 439–454. Am Soc Microbiol, Wash DC

    Google Scholar 

  • Ward DM, Tayne TA, Anderson KL and Bateson MM (1987) Community structure, and interactions among community members in hot spring cyanobacterial mats. Symp Soc Gen Microbiol 41: 179–210

    CAS  Google Scholar 

  • Ward DM, Weller R, Shiea J, Castenholz RW and Cohen Y (1989a) Hot spring microbial mats: anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y and Rosenburg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 3–15. Am SOC Microbiol, Washington DC

    Google Scholar 

  • Ward DM, Bateson MM, Weller R and Ruff-Roberts AL (1992a) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv Microbial Ecol 12: 219–286

    CAS  Google Scholar 

  • Ward DM, Bauld J, Castenholz RW and Pierson BK (1992b) Modem phototrophic microbial mats: anoxygenic, intermittently oxygenic/anoxygenic, thermal, eucaryotic and terrestrial. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere: A Multidisciplinary Study, pp 309–324. Cambridge University Press, Cambridge

    Google Scholar 

  • Ward DW, Fems MJ and Bateson MM (in press) Organization of native populations within hot spring microbial mat communities: need for a more ecological approach. In: ISME Symposium Proceedings, Santos, Brazil

    Google Scholar 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM, Kopczynski ED and Ruff-Roberts AL (1994a) Species diversity in hot spring microbial mats as revealed by both molecular and enrichment culture approaches-relationship between biodiversity and community structure. In: Stal LJ and Caumette P (eds) Microbial mats: Structure, Development and Environmental Significance, Series G: Ecological Sciences, vol 35, NATO/ASI Series, pp 33–44. Springer-Verlag, Heidelburg

    Google Scholar 

  • Ward DM, Panke S, Kloeppel KD, Christ R and Fredrickson H (1994b) Complex polar lipids of a hot spring cyanobacterial mat and its cultivated inhabitants. Appl Environ Microbiol 60: 3358–3367

    CAS  PubMed  Google Scholar 

  • Ward DM, Santegoeds CM, Nold SC, Ramsing NB, Ferris MJ and Bateson MM (1997) Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures. Antonie van Leeuwenhoek 71: 143–150

    Article  CAS  PubMed  Google Scholar 

  • Ward DM, Weller R and Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345: 63–65

    Article  CAS  PubMed  Google Scholar 

  • Waterbury JB and Ripkka R (1989) Subsection I. Order Chroococcales Wettstein 1924, Emend. Rippka et al., 1979. In: Staley JT, Bryant MP, Pfennig N, and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3. pp 1728–1746. Williams and Wilkins, Baltimore

    Google Scholar 

  • Waterbury JB and Stanier RY (1978) Patterns of growth and development in Pleurocapsalean cyanobacteria. Microbiol Rev 42: 2–44

    CAS  PubMed  Google Scholar 

  • Weller R, Bateson MM, Heimbuch BK, Kopczynski ED and Ward DM (1992) Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat Appl Environ Microbiol 58: 3964–3969

    CAS  PubMed  Google Scholar 

  • Weller R and Ward DM (1989) Selective recovery of 16S ribosomal RNA sequences from natural microbial communities in the form of cDNA. Appl Environ Microbiol 55: 1818–1822

    CAS  PubMed  Google Scholar 

  • Weller R, Weller FW and Ward DM (1991) 16S rRNA sequences retrieved as randomly primed cDNA from a hot spring cyanobacterial mat community. Appl Environ Microbiol 57: 1146–1151

    CAS  PubMed  Google Scholar 

  • Werner D (1992) Symbiosis of Plants and Microbes. Chapman and Hall, New York

    Google Scholar 

  • Wickstrom CE (1980) Distribution and physiological determinants of blue-green algal nitrogen fixation along a thermogradient. J Phycol 16: 436–443

    Article  CAS  Google Scholar 

  • Wickstrom CE and Castenholz RW (1973) Thermophilic ostracod: aquatic metazoan with highest known temperature tolerance. Science 181: 1063–1064

    Google Scholar 

  • Wickstrom CE and Castenholz RW (1978) Association of Pleurocapsa and Calothrix (Cyanophyta) in a thermal stream. JPhycol 14:84–88

    Google Scholar 

  • Wickstrom CE and Castenholz RW (1985) Dynamics of cyanobacterial and ostracod interactions in an Oregon hot spring. Ecology 66:1024–1041

    Google Scholar 

  • Wilmotte A (1994) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 1–25. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 211–271

    Google Scholar 

  • Zeng YB, Ward DM, Brassell S and Eglinton G (1992a) Biogeochemistry of hot spring environments. 2. Lipid compositions of Yellowstone (Wyoming, U.S.A.) cyanobacterial and Chloroflexus mats. Chem Geol 95:327–345

    CAS  Google Scholar 

  • Zeng YB, Ward DM, Brassell S and Eglinton G (1992b) Biogeochemistry of hot spring environments. 3. Apolar and polar lipids in the biologically active layers of a cyanobacterial mat. Chem Geol 95:347–360

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ward, D.M., Castenholz, R.W. (2000). Cyanobacteria in Geothermal Habitats. In: Whitton, B.A., Potts, M. (eds) The Ecology of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/0-306-46855-7_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-46855-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4735-4

  • Online ISBN: 978-0-306-46855-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics