Skip to main content

Degradable Controlled Release Systems Useful for Protein Delivery

  • Chapter
Protein Delivery

Part of the book series: Pharmaceutical Biotechnology ((PBIO,volume 10))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguado, M. T., 1993, Future approaches to vaccine development: Single-dose vaccines using controlled-release delivery systems, Vaccine 11:596–597.

    Google Scholar 

  • Allcock, H. R., 1990, Polyphosphazenes as new biomedical and bioactive materials, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin and R. Langer, eds.), Marcel Dekker, New York, pp. 163–193.

    Google Scholar 

  • Allcock, H. R., and Kwon, S., 1989, An ionically cross-linkable polyphosphazene: Poly(bis(carboxylatophenoxy)phosphazene) and its hydrogel and membranes, Macromolecules 22:75–79.

    Google Scholar 

  • Alonso, M. J., Cohen, S., Park, T. G., Gupta, R. K., Siber, G. R., and Langer, R., 1993, Determinants of release rate of tetanus vaccine from polyester microspheres, Pharm. Res. 10:945–953

    Google Scholar 

  • Andrianov, A. K., Cohen, S., Visscher, K. B., Payne, L. G., Allcock, H. R., and Langer, R., 1993, Controlled release using ionotropic polyphosphazene hydrogels, J. Controlled Release 27:69–77.

    Google Scholar 

  • Anik, S. T., Sanders, L. M., Chaplin, M. D., Kushinsky, S., and Nurenberg, C., 1984, Delivery systems for LHRH and analogs, in: LHRH and Its Analogs. Contraceptive and Therapeutic Applications (B. H. Vickery, J. J. Nestor, Jr., and E. S. E. Hafez, eds.), MTP Press, Boston, pp. 421–438.

    Google Scholar 

  • Arshady, R., 1991, Preparation of biodegradable microspheres and microcapsules: 2. Polylactides and related polyesters, J. Controlled Release 17:1–22.

    Google Scholar 

  • Artursson, P., Edman, P., Laakso, T., and Sjoholm, I., 1984, Characterization of polyacryl starch microparticles as carriers for proteins and drugs, J. Pharm. Sci. 73:1507–1513.

    Google Scholar 

  • Asano, M., Fukuzaki, H., Yoshida, M., Kumakura, M., Mashimo, T., Yuasa, H., Imai, K., and Yamanaka, H., 1989a, In vivo characteristics of low molecular weight copoly(D,L-lactic acid) formulations with controlled release of LH-RH agonist, Biomaterials 10:569–573.

    Google Scholar 

  • Asano, M., Fukuzaki, H., Yoshida, M., Kumakura, M., Mashimo, T., Yuasa, H., Imai, K., Yamanaka, H., and Suzuki, K., 1989b, In vivo characteristics of low molecular weight copoly(L-lactic acid/glycolic acid) formulations with controlled release of luteinizing hormone-releasing hormone agonist, J. Controlled Release 9:111–122.

    Google Scholar 

  • Asano, M., Fukuzaki, H., Yoshida, M., Kumakura, M., Mashimo, T., Yuasa, H., Imai, K., Yamanaka, H., Kawaharada, U., and Suzuki, K., 1991, In vivo controlled release of a luteinizing hormone-releasing hormone agonist from poly(DL-lactic acid) formulations of varying degradation pattern, Int. J. Pharm. 67:61–77.

    Google Scholar 

  • Aspenberg, P., and Lohmander, S., 1989, Fibroblast growth factor stimulates bone formation, Acta Orthoped Scand 60:473–476.

    Google Scholar 

  • Baker, R. W., 1987, Controlled Release of Biologically Active Agents, John Wiley & Sons, New York, pp. 1–275.

    Google Scholar 

  • Bano, M. C., Cohen, S., Allcock, H. R., and Langer, R., 1990, Novel polyphosphazene system for drug delivery and cell microencapsulation, Proc. Int. Symp. Control. Rel. Bioact. Mater. 17:206–207.

    Google Scholar 

  • Bathurst, I. C., Barr, P. J., Kaslow, D. C., Lewis, D. H., Atkins, T. J., and Rickey, M. E., 1992, Development of a single injection transmission-blocking malaria vaccine using biodegradable microspheres, Proc. Int. Symp. Control. Rel. Bioact. Mater. 19:120–121.

    Google Scholar 

  • Bernstein, H., Mathiowitz, E., Morrel, E., and Brickner, A., 1993, Erythropoietin drug delivery system, International Patent Application WO 93/25221, date of publication: December 23, 1993

    Google Scholar 

  • Bhargava, K., and Ando H., 1992, Immobilization of active urokinase onalbumin microspheres: Use of chemical dehydrant and process monitoring, Pharm. Res. 9:776–781.

    Google Scholar 

  • Bodmer, D., Kissel, T., and Traechslin, E., 1992, Factors influencing the release of peptides and proteins from biodegradable parenteral depot systems, J. Controlled Release 21:129–138.

    Google Scholar 

  • Brady, J. M., Cutright, D. E., Miller, R. A., and Battistone, G.C., 1973, Resorption rate, route of elimination, and ultrastructure of the implant site of polylactic acid in the abdominal wall of the rat, J. Biomed. Mater. Res. 7:155–166.

    Google Scholar 

  • Brems, D. N., 1988, Solubility of different folding conformers of bovine growth hormone, Biochemistry 27:4541–4546.

    Google Scholar 

  • Brooks, S., Butterworth, K., Christie, R., and Fox, J., 1988, Comparison of the pharmacokinetics of porcine calcitonin in saline and in gelatin diluents in healthy volunteers, Eur. J. Drug Metab. Pharmacokinet. 13:91–97.

    Google Scholar 

  • Buchner, J. E., and Slade, W. C., 1909, The anhydrides of isophthalic and terephthalic acids, J. Am. Chem. Soc. 31:1319–1321.

    Google Scholar 

  • Cady, S., Fishbein, R., Schroder, U., Eriksson, H., and Probasco, B., 1993, Water dispersible and water soluble carbohydrate polymer compositions for parenteral administration of growth hormone, US. Patent 5,266,333, November 30, 1993.

    Google Scholar 

  • Camarata, P. J., Suryanarayanan, R., Turner, D. A., Parker, R. G., and Ebner, T. J., 1992, Sustained release of nerve growth factor from biodegradable polymer microspheres, Neurosurgery 30:313–319.

    Google Scholar 

  • Cardinal, J., Curatolo, W., and Ebert, C., 1990, Chitosan compositions for controlled and prolonged release of macromolecules, US. Patent 4,895,724, January 23, 1990.

    Google Scholar 

  • Chasin, M and Langer, R. (eds.), 1990, Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York.

    Google Scholar 

  • Chasin, M., Domb, A., Ron, E., Mathiowitz, E., Langer, R., Leong, K. W., Laurencin, C., Brem, H., and Grossman, S., 1990, Polyanhydrides as drug delivery systems, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin and R. Langer, eds.), Marcel Dekker, New York, pp. 43–70.

    Google Scholar 

  • Choi, N. S., and Heller, J., 1978a, Drug delivery devices manufactured from polyorthoesters and polyorthocarbonates, U.S. Patent 4,093,709, June 6, 1978.

    Google Scholar 

  • Choi, N. S., and Heller, J., 1978b, Structured orthoesters and orthocarbonate drug delivery devices, U.S. Patent 4,131,648, December 26, 1978.

    Google Scholar 

  • Choi, N. S., and Heller, J., 1979, Erodible agent releasing device comprising poly(orthoesters) and poly(orthocarbonates), U.S. Patent 4,138,344, December 26, 1979.

    Google Scholar 

  • Cohen, S., Bano, M. C., Visscher, K. B., Chow, M., Allcock, H. R., and Langer, R., 1990, Ionically cross-linkable polyphosphazene: A novel polymer for microencapsulation, J. Am. Chem. Soc. 112:7832–7833.

    Google Scholar 

  • Cohen, S., Yoshioka, T., Lucarelli, M., Hwang, L. H., and Langer, R., 1991, Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres, Pharm Res. 8:713–720.

    Google Scholar 

  • Conix, A., 1958, Aromatic polyanhydrides, a new class of high melting fibre-formingpolymers, J. Polym. Sci. 29:343–353.

    Google Scholar 

  • Crommen, J., Vandorpe, J., and Schacht, E., 1993, Degradable polyphosphazenes for biomedical applications, J. Controlled Release 24:167–180.

    Google Scholar 

  • Dea therage, J., and Miller, E., 1987, Packaging and delivery of bone induction factors in a collagenous implant, Collagen Relat. Res. 7:225–231.

    Google Scholar 

  • Dittrich, V. W., and Schulz, R. C., 1971, Kinetics and mechanism of the ring-opening polymerization of l-lactide, Angew. Makromol. Chem. 15:109–126.

    Google Scholar 

  • Doi, Y., Kanesawa, Y., Kunioka, M., and Saito, T., 1990, Biodegradation of microbial copolyesters: Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxyvalerate), Macromolecules 23:26–31.

    Google Scholar 

  • Domb, A. J., and Langer, R., 1987, Polyanhydrides. I. Preparation of high molecular weight polyanhydrides, J. Polym. Sci. 25:3373–3386.

    Google Scholar 

  • Doolittle, R., 1973, Structural aspects of the fibrinogen to fibrin conversion, Adv. Protein Chem. 27:1–109.

    Google Scholar 

  • Doolittle, R., 1984, Fibrinogen and fibrin, Annu. Rev. Biochem. 53:195–229.

    Google Scholar 

  • Dunn, R. L., Tipton, A. J., and Menardi, E. M., 1991, A biodegradable in-situ forming drug delivery system, Proc. Int. Symp. Control. Rel. Bioact. Mater. 18:465–466.

    Google Scholar 

  • Duysen, E. G., Yewey, G. L., and Dunn, R. L., 1992, Bioactivity of polypeptide growth factors released from the atrigel™ drug delivery system, Pharm. Res. 9:S-73.

    Google Scholar 

  • Duysen, E. G., Yewey, G. L., Southard, J. L., Dunn, R. L., and Huffer, W., 1993, Release of bioactive growth factors from the artigel™ delivery system in tibial defect and dermal wound models, Pharm. Res. 10:S-83.

    Google Scholar 

  • Edman, P., Ekman, B., and Sjoholm, I., 1980, Immobilization of proteins in microspheres of biodegradable polyacryldextran, J. Pharm. Sci. 69:838–842.

    Google Scholar 

  • Eldridge, J. H., Staas, J. K., Meulbroek, J. A,, McGhee, J. R., Tice, T. R., and Gilley, R. M., 1991, Biodegradable microspheres as a vaccine delivery system, Mol. Immunol. 28:287–294.

    Google Scholar 

  • Engstrom, S., Lindman, B., and Larsson, K., 1992, Method of preparing controlled release preparations for biologically active materials and resulting compositions, U.S. Patent 5,151,272, September 29, 1992.

    Google Scholar 

  • Eppstein, D. A., 1986, Alternative delivery of interferons, in: Targeting of Drugs with Synthetic Systems (G. Gregoriadis, J. Senior, and G. Poste, eds.), Plenum Press, New York, p.207.

    Google Scholar 

  • Eppstein, D. A., and Longenecker, J. P., 1988, Alternative delivery systems for peptides and proteins as drugs, Crit. Rev. Ther. Drug Carrier Syst. 5:99–139.

    Google Scholar 

  • Feijen, J., 1990, Biodegradable hydrogel matrices for the controlled release of pharmacologically active agents, U.S. Patent 4,925,677, May 15, 1990.

    Google Scholar 

  • Ferguson, T., Harrison, R., and Moore, D., 1986, Injectable sustained release formulation, European Patent Application 0 211 691 A2, date of filing: August 20, 1986.

    Google Scholar 

  • Frazza, E.J., and Schmitt, E.E., 1971, Anewabsorbablesuture, J. Biomed Mater. Res. Symp. 1:43–58.

    Google Scholar 

  • Fujioka, K., Sato, S., Sasaki, Y., Miyata, T., Furuse, M., and Naito, H., 1989, Method for producing sustained release formulation, U.S. Patent 4,849,141, July 18, 1989.

    Google Scholar 

  • Fujioka, K., Sato, S., Tamura, N., Takada, Y., Sasaki, Y., and Maeda, M., 1993, Controlled release formulation, U.S. Patent 5,236,704, August 17, 1993.

    Google Scholar 

  • Fukuzaki, H., Yoshida, M., Asano, M., Kumakura, M., Yamanaka, H., Mashimo, T., Yuasa, H., Imai, K., Kawaharada, U., and Suzuki, K., 1989, A new biodegradable pasty-type of L-lactic acid and D-valerolactone with relatively low molecular weight for application in drug delivery systems, J. Controlled Release 10:293–303.

    Google Scholar 

  • Furr, B. J. A., and Hutchinson, F. G, 1992, A biodegradable delivery system for peptides: Preclinical experience with the gonadotrophin-releasing hormone agonist, Zoladex®, J. ControlledRelease 21:117–128.

    Google Scholar 

  • Ghezzo, E., Benedetti, L., Rochira, M., Biviano, F., and Callegaro, L., 1992, Hyaluronane derivative microspheres as NGF delivery devices: Preparation methods and in vitro release characterization, Int. J. Pharm. 87:21–29.

    Google Scholar 

  • Gilbert, D., and Kim S., 1990, Macromolecular release from collagen monolithic devices, J. Biomed Mater. Res. 24:1221–1239.

    Google Scholar 

  • Gilbert, D., Okano, T., Miyata, T., and Kim S., 1988, Macromolecular diffusion through collagen membranes, Int. J. Pharm. 47:79–88.

    Google Scholar 

  • Golumbek, P., Azhari, R., Jaffee. E., Levitsky, H., Lazenby, A., Leong, K., and Pardoll, D., 1993, Controlled release, biodegradable cytokine depots: A new approach in cancer vaccine design, CancerRes. 53:5841–5844.

    Google Scholar 

  • Goosen, M., Leung, Y., Chou, S., and Sun, A., 1982, Insulin-albumin microbeads: An implantable, biodegradable system, Biomater. Med. Devices Artif: Organs 10:205–218.

    Google Scholar 

  • Hageman, M. J., Bauer, J. M., Possert, P. L., and Darrington, R. T., 1992, Preformulation studies oriented toward sustained delivery of recombinant somatotropins, J. Agric, Food Chem. 40:348–355.

    Google Scholar 

  • Hazrati, A. M., Lewis, D. H., Atkins, T. J., Stohrer, R. C., Little, J. E., and Meyer, L., 1992, Studies of controlled delivery tetanus vaccine in mice, Proc. Int. Symp. Control. Rel. Bioact. Mater. 20:367–68.

    Google Scholar 

  • Heller, J., 1987, Use of polymers in controlled release of active agents, in: Controlled Drug Delivery. Fundamentals and Applications (J. R. Robinson and V. H. L. Lee, eds.), 2nd ed., Marcel Dekker, New York, pp. 180–210.

    Google Scholar 

  • Heller, J., 1993a, Polymers for controlled parenteral delivery of peptides and proteins, Adv. Drug Delivery Rev. 10:3163–204.

    Google Scholar 

  • Heller, J., 1993b, Poly(ortho esters), Adv. Polym. Sci. 107:43–92

    Google Scholar 

  • Heller, J., Penhale, D. W. H., and Helwing, R. F., 1980, Preparation of poly(ortho esters) by the reaction of ketene acetals and polyols, J. Polym. Sci., Polym. Lett. Ed. 18:82–83.

    Google Scholar 

  • Heller, J., Helwing, R. F., Baker, R. W., and Tuttle, M. E., 1983, Controlled release of water-soluble macromolecules from bioerodible hydrogels, Biomaterials 4:262–266.

    Google Scholar 

  • Heller, J., Ng, S. Y., Penhale, D. W., Fritzinger, B. K., Sanders, L. M., Burns, R. A., Gaynon, M. G., and Bhosale, S. S., 1987, Use of poly(ortho esters) for the controlled release of 5-fluorouracil and a LHRH analogue, J. Controlled Release, 6:217–224.

    Google Scholar 

  • Heller, J., Sparer, R. V., and Zentner, G. M., 1990a, Poly(ortho esters) in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin and R. Langer, eds.), Marcel Dekker, New York, pp. 121–161.

    Google Scholar 

  • Heller, J., Ng, S. Y., Fritzinger, B. K., and Roskos, K. V., 1990b, Controlled drug release from bioerodible hydrophobic ointments, Biomaterials 11:235–237.

    Google Scholar 

  • Hill, J., and Carothers, W. H., 1932, Studies on polymerization and ring formation. XIV. A linear superpolyanhydride and cyclic dimeric anhydride from sebacic acid, J. Am. Chem. Soc. 54:1569–1579.

    Google Scholar 

  • Ho, H., and Chen C., 1993, Diffusion characteristics of fibrin film, Int. J. Pharm. 90:95–104

    Google Scholar 

  • Holland, S. J., Tighe, B. J., and Gould, P. L., 1986, Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems, J. Controlled Release 4:155–180.

    Google Scholar 

  • Holland, S. J., Jolly, A. M., Yasin, M., and Tighe, B. J., 1987, Polymers for biodegradable medical devices II. Hydroxybutyrate-hydroxyvalerate colpolymers: Hydrolytic degradation studies, Biomaterials 8:289–295.

    Google Scholar 

  • Hollinger, J. O., and Battistone, G. C., 1986, Biodegradable bone repair materials, Clin. Orthop. Relat. Res. 207:290–305.

    Google Scholar 

  • Hollinger, J. O., Schmitz, J. P., Mark, D. E., and Seyfer, A. E., 1990, Osseous wound healing with xenogeneic bone implants with a biodegradable carrier, Surgery 107:50–54.

    Google Scholar 

  • Holmes, P. A., 1985, Applications of PHB—A microbially produced biodegradable thermoplastic, Phys. Technol. 16:32–36.

    Google Scholar 

  • Hora, M. S., Rana, R. K., Taforo, T. A., Nunberg, J. H., Tice, T. R., Gilley, R. M., and Hudson, M. E., 1989, Development of a controlled release microsphere formulation of interleukin-2, Proc. Int. Symp. Control. Rel. Bioact. Mater. 16:509–510.

    Google Scholar 

  • Hora, M. S., Rana, R. K., Nunberg, J. H., Tice, T. R., Gilley, R. M., and Hudson, M. E., 1990, Release of human serum albumin from poly(lactide-co-glycolide) microspheres, Pharm. Res. 7:1190–1194.

    Google Scholar 

  • Hori, R., Komada, F., Iwakawa, S., Seino, Y., and Okumura, K., 1989, Enhanced bioavailability of subcutaneously injected insulin coadministered with collagen in rats and humans, Pharm. Res. 68:13–816.

    Google Scholar 

  • Horisaka, Y., Okamoto, Y., Matsumoto, N., Yoshimura, Y., Hirano, A., Nishida, M., Kawada, J., Yamashita, K., and Takagi, T., 1994, Histological changes of implanted collagen material during bone induction, J. Biomed. Mater. Res. 28:97–103.

    Google Scholar 

  • Hsu, C., Nguyen, H., and Wu, S., 1993, Reconstitutable lyophilized protein formulation, U.S. Patent 5,192,743, March 9, 1993.

    Google Scholar 

  • Hutchinson, F. G., and Furr, B. J. A., 1985, Biodegradable polymers for the sustained release of peptides, Biochem. Soc. Trans. 12:520–523.

    Google Scholar 

  • Hutchinson, F. G., and Furr, B. J. A., 1987, Biodegradable carriers for the sustained release of polypeptides, TibTech. 5:102–106.

    Google Scholar 

  • Hutchinson, F. G., and Burr, B. J. A., 1990, Biodegradable polymer systems for the sustained release of polypeptides, J. Controlled Release 13:279–294.

    Google Scholar 

  • Hutchinson, F. G., and Furr, B. J. A., 1991, Biodegradable polymer systems for the sustained release of polypeptides, in: High Value Polymers (A. H. Fawcett, ed.), Proc. Symp. R Soc. Chem. 87:58–78.

    Google Scholar 

  • Imasaka, K., Yoshida, M., Fukuzaki, H., Asano, M., Kumakura, M., Mashimo, T., Yamanaka, H., and Nagai, T., 1991, A new biodegradable implant consisting of waxy-type poly(e-caprolactone-co-D-valerolactone) and estramustine, Int. J. Pharm. 68:87–95.

    Google Scholar 

  • Jamas, S., Ostroff, G., and Easson, D., 1991, Glucan drug delivery system and adjuvant, U.S. Patent 5,032,401, July 16, 1991.

    Google Scholar 

  • Janoff, A., Popescu, M., Weiner, A., Bolcsak, L., Tremblay, P., and Swenson, C., 1993, Compositions containing tris salt of cholesterol hemisuccinate and antifungal, U.S. Patent 5,231,112, July 27, 1993.

    Google Scholar 

  • Kawamura, M., and Urist, M., 1988, Human fibrin is a physiologic delivery system for bone morphogenetic protein, Clin. Orthop. Relat. Res. 235:302–310.

    Google Scholar 

  • Kenley, R. A., Yim, K., Abrams, J., Ron, E., Turek, T., Marden, L. J., and Hollinger, J. O., 1993, Biotechnology and bone graft substitutes, Pharm. Res. 10:1393–1401.

    Google Scholar 

  • Kent, J., Cholesterol matrix delivery system for sustained release of macromolecules, U.S. Patent 4,452,775, June 5, 1984.

    Google Scholar 

  • Khan, M., Tucker, I., and Opdebeeck, J., 1993, Evaluation of cholesterol-lecithinimplants for sustained delivery of antigen: Release in vivo and single step immunization of mice, Int. J. Pharm. 90:255–262.

    Google Scholar 

  • Khan, M. Z. I., Opdebeeck, J. P., and Tucker, I. G., 1994, Immunopotentiation and delivery systems for antigens for single-step immunization: Recent trends and progress, Pharm. Res. 11:2–11.

    Google Scholar 

  • Kohn, J., Niemi, S. M., Albert, E. C., Murphy, J. C., Langer, R., and Fox, J. G., 1986, Single-step immunization using a controlled release biodegradable polymer with sustained adjuvant activity, J. Immunol. Methods 95:31–38.

    Google Scholar 

  • Konig, W., Seidel, J. R., and Sandow, J. K., 1985, European Patent Application 0133,988 (C1A61K37/02), March 13, 1985.

    Google Scholar 

  • Kost, J., and Shefer, S., 1990, Chemically modified polysaccharides for enzymatically controlled oral drug delivery, Biomaterials 11:695–698.

    Google Scholar 

  • Kulkarni, R. K., Moore, E. G., Hegyelli, A. F., and Leonard, F., 1971, Biodegradable polylactic acid polymers, J. Biomed. Mater. Res. 5:169–181.

    Google Scholar 

  • Kwon, G., Bae, Y., Cremers, H., Feijen, J., and Kim, S., 1992, Release of proteins via ion exchange from albumin-heparinmicrospheres, J. Controlled Release 22:83–94.

    Google Scholar 

  • Kwong, A. K., Chou, S., Sun, A. M., Sefton, M. V., and Goosen, M. F. A., 1986, In vitro and in vivo release of insulin from poly(lactic acid) microbeads and pellets, J. Controlled Release 4:47–62.

    Google Scholar 

  • Langer, R., and Moses, M., 1991, Biocompatible controlled release polymers for delivery of polypeptides and growth factors, J. Cell. Biochem. 45:340–345.

    Google Scholar 

  • Laurencin, C. T., Koh, H. J., Neenan, T. X., Allcock, H. R., and Langer, R., 1987, Controlled release using a new bioerodible polyphosphazene matrix system, J. Biomed. Mater. Res. 21:1231–1246.

    Google Scholar 

  • Lee, K. C., Soltis, E. E., Newman, P. S., Burton, K. W., Mehta, R. C., and DeLuca, P. P., 1991, In vivo assessment of salmon calcitonin sustained release from biodegradable microspheres, J. Controlled Release 17:199–206.

    Google Scholar 

  • Lee, V. H. L., 1991, Trends in peptide and protein drug delivery, Biopharm 1991(March):22–25.

    Google Scholar 

  • Leong, K. W., and Langer, R., 1987, Polymeric controlled drug delivery, Adv. Drug Delivery Rev. 1:199–233.

    Google Scholar 

  • Leong, K. W., Brott, B. C., and Langer, R., 1985, Bioerodible polyanhydrides as drug-carrier matrices. I. Characterization, degradation and release characteristics, J. Biomed. Mater. Res. 19:945–955.

    Google Scholar 

  • Leong, K. W., D’Amore, P., Marletta, M., and Langer, R., 1986a, Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity, J. Biomed. Mater. Res. 20:51–64.

    Google Scholar 

  • Leong, K. W., Kost, J., Mathiowitz, E., and Langer, R., 1986b, Polyanhydrides for controlled release of bioactive agents, Biomaterials 7:364–371.

    Google Scholar 

  • Leong, K. W., Simonte, V., and Langer, R., 1987, Synthesis of polyanhydrides: Melt-polycondensation, dehydrochlorination, and derivative coupling, Macromolecules 20:705–712.

    Google Scholar 

  • Lewis, D. H., 1990, Controlled release of bioactive agents from lactide/glycolide polymers, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin and R. Langer, eds.), Marcel Dekker, New York, pp. 1–41.

    Google Scholar 

  • Lovell, T. P., Dawson, E. G., Nilsson, O. S., and Urist, M. R., 1989, Augmentation of spinal fusion with bone morphogenetic protein in dogs, Clin. Orthop. Relat. Res. 243:266–274.

    Google Scholar 

  • Lucas, P., Syftestad, G., Goldberg, V., and Caplan, A., 1989, Ectopic induction of cartilage and bone by water soluble proteins from bovine bone using a collagenous delivery vehicle, J. Biomed. Mater. Res.: Appl. Biomater. 23:(A1):23–39.

    Google Scholar 

  • Lucas, P. A., Laurencin, C., Syftestad, G. T., Domb, A., Goldberg, V. M., Caplan, A. I., and R. Langer, 1990, Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a polyanhydride delivery vehicle, J. Biomed. Mater. Res. 24:901–911.

    Google Scholar 

  • Marshall, L., Patel, K., and Roufa, D., 1991, Controlled release formulations of trophic factors in ganglioside liposome vehicle, U.S. Patent 5073,543, December 17, 1991.

    Google Scholar 

  • Mathiowitz, E., and Langer, R., 1987, Polyanhydride microspheres as drug carriers I. Hot-melt microencapsulation, J. Controlled Release 5:13–22.

    Google Scholar 

  • Mathiowitz, E., Leong, K., and Langer, R., 1985, Macromolecular drug release from biodegradable polyanhydride microspheres, Proc. Int. Symp. Control. Rel. Bioact. Mater. 12:183–184.

    Google Scholar 

  • Mathiowitz, E., Saltzman, W. M., Domb, A., Dor, P., and Langer, R., 1988, Polyanhydride microspheres as drug carriers 11. Microencapsulation by solvent removal, J. Appl. Polym. Sci. 35:755–774.

    Google Scholar 

  • Mathiowitz, E., Bernstein, H., Morrel, E., and Schwaller, K., 1993, Method for producing protein microspheres, U.S. Patent 5,271,961, December 21, 1993.

    Google Scholar 

  • Maulding, H. V., 1987, Prolonged delivery of peptides by microcapsules, J. Controlled Release 6:167–176.

    Google Scholar 

  • Medisorb Technologies International, 1990, Bioabsorbable Polymers, Properties, Uses, Storage and Handling, Medisorb Technical Bulletin.

    Google Scholar 

  • Miller, E., and Gay, S., 1987, The collagens: An overview and update, Methods Enzymol. 144:3–41.

    Google Scholar 

  • Mitchell, J., 1985, Prolonged release by biologically active polypeptides, European Patent Application 0 177 478 A2, date of filing: October 3, 1985.

    Google Scholar 

  • Miyamoto, S., Takaoka, K., Okada, T., Yoshikawa, H., Hashimoto, J., Suzuki, S., and Ono, K., 1992, Evaluation of polylactic acid homopolymers as carriers for bone morphogenetic protein, Clin. Orthop. Relat. Res. 278:274–285.

    Google Scholar 

  • O’Hagan, D. T., Rahman, D., McGee, J. P., Jeffery, H., Davies, M. C., Williams, P., Davis, S. S., and Challacombe, S. J., 1991, Biodegradable microparticles as controlled release antigen delivery systems, Immunology 73:239–242.

    Google Scholar 

  • Okada, H., 1989, One-month release injectable microspheres of leuprolide acetate, a superactive agonist of LHRH, Proc. Int. Symp. Control. Rel. Bioact. Mater. 16:12–13.

    Google Scholar 

  • Okada, H., Heya, T., Ogawa, Y., and Shimamoto, T., 1988, One-month release injectable microcapsules of a luteinizing hormone-releasing hormone agonist (leuprolide acetate) for treating experimental endometriosis in rats, J. Pharm. Exp. Ther. 244:744–750.

    Google Scholar 

  • Okada, H., Inoue, Y., Heya, T., Ueno, H., Ogawa, Y., and Toguchi, H., 1991, Pharmacokinetics of once-a-month injectable microspheres of leuprolide acetate, Pharm. Res. 8:787–791.

    Google Scholar 

  • Ogawa, Y., Okada, H., Yamamoto, M., and Shimamoto, T., 1988, In vivo release profiles of leuprolide acetate from microcapsules prepared with polylactic acids or copoly(lactic/glycolic) acids and in vivo degradation of these polymers, Chem. Pharm. Bull. 36:2576–2581.

    Google Scholar 

  • Opdebeeck, J., and Tucker I., 1993, A cholesterol implant used as a delivery system to immunize mice with bovine serum albumin, J. Controlled Release 23:271–279.

    Google Scholar 

  • Papini, D., Stella, V., and Topp, E., 1993, Diffusion of macromolecules in membranes of hyaluronic acid esters, J. Controlled Release 27:47–57.

    Google Scholar 

  • Park, K., Shalaby, W., and Park, H., 1993, Biodegradable Hydrogels for Drug Delivery, Technomic Publishing, Basle.

    Google Scholar 

  • Physicians’ Desk Reference, 1994, 48th ed., Medical Economics Data Production Company, Montvale, New Jersey.

    Google Scholar 

  • Piez, K., 1985, Encyclopedia of Polymer Science and Engineering, Vol. 3, 2nd ed., John Wiley & Sons, New York, pp. 699–727.

    Google Scholar 

  • Pitt, C., 1990a, The controlled parenteral delivery of polypeptides and proteins, Int. J. Pharm. 59:173–196.

    Google Scholar 

  • Pitt, C. G., 1990b, Poly-e-caprolactone and its copolymers, in: Biodegradable Polymers as Drug Delivery Systems (M. Chasin and R. Langer, eds.), Marcel Dekker, New York, pp. 71–120.

    Google Scholar 

  • Pitt, C. G., 1992, Non-microbial degradation of polyesters: Mechanisms and modifications, in: Biodegradable Polymers and Plastics (M. Vert, J. Feijen, A. Albertsson, G. Scott, and E. Chiellini, eds.), Royal Society of Chemistry, Cambridge, pp. 7–19.

    Google Scholar 

  • Pitt, C. G., Cha, Y., Hendren, R. W., Holloman, M., and Schindler, A., 1987, Manipulation of the permeability and degradability of polymers, Proc. Int. Symp. Control. Rel. Bioact. Mater. 14:75–76.

    Google Scholar 

  • Prisell, P., Camber, O., Hiselius, J., and Norstedt, G., 1992, Evaluation of hyaluronan as a vehicle for peptide growth factors, Int. J. Pharm. 85:51–56.

    Google Scholar 

  • Pulapura, S., Li, C., and Kohn, J., 1990, Structure-property relationships for the design of polyiminocarbonates, Biomaterials 11:666–678.

    Google Scholar 

  • Radomsky, M. L., Brouwer, G., Floy, B. J., Loury, D. J., Chu, F., Tipton, A. J., and Sanders, L. M., 1993, The controlled release of Ganirelix from the Atrigel™ injectable implant system, Proc. Int. Symp. Control. Rel. Bioact. Mater. 20:458–459.

    Google Scholar 

  • Raghuvanshi, R. S., Singh, M., and Talwar, G. P., 1993, Biodegradable delivery system for single step immunization with tetanus toxoid, Int. J. Pharm. 93:R1–R5.

    Google Scholar 

  • Ron, E., Turek, T., Mathiowitz, E., Chasin, M., and Langer, R., 1989, Release of polypeptides from poly(anhydride) implants, Proc. Int. Symp. Control. Rel. Bioact. Mater. 16:338–339.

    Google Scholar 

  • Ron, E., Turek, T., Mathiowitz, E., Chasin, M., Hageman, M., and Langer, R., 1993, Controlled release of polypeptides from polyanhydrides, Proc. Natl. Acad. Sci. USA 90:4176–4180.

    Google Scholar 

  • Rosen, H. G., Chang, J., Wnek, G. E., Linhardt, R. J., and Langer, R., 1983, Bioerodible polyanhydrides for controlled drug delivery, Biomaterials 4:31–133.

    Google Scholar 

  • Rosenblatt, J., Rhee, W., and Wallace, D., 1989, The effect of collagen fiber size distribution on the release rate of proteins from collagen matrices by diffusion, J. Controlled Release 9:195–203.

    Google Scholar 

  • Royer, G., Lee, T., and Sokoloski, T., 1983, Entrapment of bioactive compounds within native albumin beads, J. Pharm. Sci. Technol. 37:34–37.

    Google Scholar 

  • Sah, H. K., and Chien, Y. W., 1993, Evaluation of a microreservoir-type biodegradable microcapsule for controlled release of proteins, Drug Dev. Ind. Pharm. 19:1243–1263.

    Google Scholar 

  • Sanders, L. M., 1990, Controlled delivery systems for peptides, in: Peptide and Protein Drug Delivery (V. H. L. Lee, ed.), Marcel Dekker, New York, pp. 785–806.

    Google Scholar 

  • Sanders, L. M., Kent, J. S., McRae, G. I., Vickery, B. H., Tice, T. R., and Lewis, D. H., 1984, Controlled release of luteinizing hormone-releasing hormone analogue from poly(d,l-lactide-co-glycolide), J. Pharm. Sci. 73:1294–1297.

    Google Scholar 

  • Sanders, L. M., McRae, G. I., Vitale, K. M., and Kell, B. A., 1985, Controlled delivery of an LHRH analogue from biodegradable injectable microspheres, J. Controlled Release 2:187–195.

    Google Scholar 

  • Sanders, L. M., Kell, B. A,, McRae, G. I., and Whitehead, G. W., 1986, Prolonged controlled-release of Nafarelin, a luteinizing hormone-releasing hormone analogue, from biodegradable polymeric implants: Influence of composition and molecular weight of polymer, J. Pharm. Sci. 75:356–360.

    Google Scholar 

  • Schindler, A., Porous bioabsorbable polyesters as controlled-release reservoirs for high molecular weight drugs, European Patent Application EP 223708 A2, May 27, 1987.

    Google Scholar 

  • Schmitz, J. P., and Hollinger, J. O., 1988, A preliminary study of the osteogenic potential of a biodegradable alloplastic-osteoinductive alloimplant, Clin. Orthop. Relat. Res. 237:245–255.

    Google Scholar 

  • Schroder, U., 1984, A crystallised carbohydrate matrix for biologically active substances, a process of preparing said matrix, and the use thereof, International Patent Application WO 84/00294, date of publication: February 2, 1984.

    Google Scholar 

  • Senderoff, R., Sheu, M., and Sokoloski, T., 1991, Fibrin based drug delivery systems, J. Parenter. Sci. Technol. 45:2–6.

    Google Scholar 

  • Shah, N. H., Railkar, A. S., Chen, F. C., Tarantino, R., Kumar, S., Murjani, M., Palmer, D., Infeld, M. H., and Malick, A. W., 1993, A biodegradable injectable implant for delivering micro and macromolecules using poly(lactic-co-glycolic) acid (PLGA) copolymers, J. Controlled Release 27:139–147.

    Google Scholar 

  • Shah, S. S., Cha, Y., and Pitt, C. G., 1992, Poly(glycolic acid-co-lactic acid): Diffusion or degradation controlled drug delivery?, J. Controlled Release 18:261–270.

    Google Scholar 

  • Singh, M., Singh, A., and Talwar, G. P., 1991a, Controlled delivery of diphtheria toxoid using biodegradable poly(d,l-lactide) microcapsules, Pharm. Res. 8:958–961.

    Google Scholar 

  • Singh, M., Rathi, R., Singh, A., Heller, J., Talwar, G. P., and Kopecek, J., 1991b, Controlled release of LHRH-DT from bioerodible hydrogel microspheres, Int. J. Pharm. 76:R5–R8.

    Google Scholar 

  • Singh, M., Singh, O., Singh, A., and Talwar, G. P., 1992, Immunogenicity studies on diphtheria toxoid loaded biodegradable microspheres, Int. J. Pharm. 85:R5–R8.

    Google Scholar 

  • Sivaramakrishnan, K., and Miller, L., 1990, Controlled release delivery device for macromolecular proteins, International Patent Application WO 90/11070, date of publication: October 4, 1990.

    Google Scholar 

  • Sivaramakrishnan, K., and Miller, L., 1993, Controlled release delivery device for macromolecular proteins, United States Patent 5, 219, 572, June 15, 1993.

    Google Scholar 

  • Song, S., and Morawiecki, A., 1993, Collagen containing sponges as drug delivery for proteins, European Patent Application 0 568 334 A1, date of filing: April 28, 1993.

    Google Scholar 

  • Steber, W., Fishbein, R.M. and Cady, S., 1987, Compositions for parenteral administration and their use, European Patent Application 0 257 368 A1, date of filing: August 4, 1987.

    Google Scholar 

  • Stevens, V. C., Powell, J. E., Lee, A. E., Kaumaya, P. T. P., Lewis, D. H., Rickey, M., and Atkins, T. J., 1992, Development of a delivery system for a birth control vaccine using biodegradable microspheres, Proc. Int. Symp. Control. Rel. Bioact. Mater. 19:112–113.

    Google Scholar 

  • Tabata, Y., and Ikada, Y., 1989, Synthesis of gelatin microspheres containing interferon, Pharm. Res. 64:22–427.

    Google Scholar 

  • Tabata, Y., and Langer, R., 1993, Polyanhydride microspheres that display near-constant release of water-soluble model drug compounds, Pharm Res. 10:391–399.

    Google Scholar 

  • Tabata, Y., Takebayashi, Y., Ueda, T., and Ikada, Y., 1993a, A formulation method using D,L-lactic acid oligomer for protein release with reduced initial burst, J. Controlled Release 23:55–64.

    Google Scholar 

  • Tabata, Y., Gutta, S., and Langer, R., 1993b, Controlled delivery systems for proteins using polyanhydride microspheres, Pharm Res. 10:487–496.

    Google Scholar 

  • Tadmor, Z., and Gogos, C. G., 1979, Principles of Polymer Processing, John Wiley & Sons, New York.

    Google Scholar 

  • Takaoka, K., Koezuka, M., and Makahara, H., 1991, Telopeptide-depleted bovine skin collagen as a carrier for bone morphogenetic protein, J. Orthoped. Res. 9:902–907.

    Google Scholar 

  • Torchilin, V. P., Tischenko, E. G., Smirnov, V. N., and Chazov, E. I., 1977, Immobilization of enzymes on slowly soluble carriers, J. Biomed. Mater. Res. 11:223–235.

    Google Scholar 

  • Toriumi, D. M., Kotler, H. S., Luxenberg, D. P., Holtrop, M. E., and Wang, E. A., 1991, Mandibular reconstruction with a recombinant bone-inducing factor, Arch Otolaryngol. Neck Surg 177:1101–1121.

    Google Scholar 

  • Wallace, D., McPherson, J., Ellingsworth, L., Cooperman L., Armstrong R., and Piez K., 1988, Injectable collagen for tissue augmentation, in: Collagen, Vol. 3 (M. E. Nimni, ed.), CRC Press, Boca Raton, Florida, pp. 117–141.

    Google Scholar 

  • Wang, H. T., Schmitt, E., Flanagan, D. R., and Linhardt, R. J., 1991, Influence of formulation methods on the in vitro controlled release of protein from poly(ester) microspheres, J. Controlled Release 17:23–32.

    Google Scholar 

  • Wang, P., 1987, Prolonged release of insulin by cholesterol-matrix implant, Diabetes 36:1068–1072.

    Google Scholar 

  • Waxman, J. H., Sandow, J., Magill, P. J. and Oliver, R. T. D., 1985, Symposium on Treatment Advances: Prostatic Cancer Role LHRH-Superagonists, Baden, June 1985.

    Google Scholar 

  • Weiner, A., Carpenter-Green, S., Soehngen, E., Lenk, R., and Popescu, M., 1985, Liposome-collagen gel matrix: A novel sustained drug delivery system, J. Pharm. Sci. 74:922–925.

    Google Scholar 

  • Williams, D. F., 1987, Definitions in Biomaterials, Proceedings of a Consensus Conference of the European Society for Biomaterials, Elsevier, Amsterdam.

    Google Scholar 

  • Wise, D. L., Trantolo, D. J., Marino, R. T., and Kitchell, J. P., 1987, Opportunities and challenges in the design of implantable biodegradable polymeric systems for the delivery of antimicrobial agents and vaccines, Adv. Drug Delivery Rev. 1:19–39.

    Google Scholar 

  • Wuthrich, P., Ng, S. Y., Fritzinger, B. K., Roskos, K. V., and Heller, J., 1992, Pulsatile and delayed release of lysozyme from ointment-like poly(ortho esters), J. Controlled Release 21:191–200.

    Google Scholar 

  • Yamahira, Y., Fujioka, K., Sato, S., and Yoshida, N., 1984, Sustained release preparation, European Patent Application 0 138 216 A2, date of filing: October 12, 1984.

    Google Scholar 

  • Yamahira, Y., Fujioka, K., Sato, S., and Takada, Y., 1988, Long term sustained release preparation, U.S. Patent 4,774,091, September 27, 1988.

    Google Scholar 

  • Yamahira, Y., Fujioka, K., and Sato, S., 1989, Sustained release preparation, U.S. Patent 4,855,134, August 3, 1989.

    Google Scholar 

  • Yamazaki, H., Miyazaki, M., and Matsumoto, K., 1992, Cellulosic wound dressing with an active agent ionically absorbed thereon, U.S. Patent 5,098,417, March 24, 1992.

    Google Scholar 

  • Yan, C., Hewetson, J., Creasia, D., Nelson, E., Rill, W., Tammariello, R., Mereish, K., and Kende, M., 1993, Enhancement of ricin toxoid efficacy by controlled rate-release from microcapsules, Proc. Int. Symp. Control. Rel. Bioact. Mater. 20:71–72.

    Google Scholar 

  • Yasko, A. W., Lane, J. M., Fellinger, E. J., Rosen, V., Wozney, J. M., and Wang, E. A., 1992, The healing of segmental defects induced by recombinant human bone morphogenetic protein-2, J. Bone Joint Surg. 74-A:659–671.

    Google Scholar 

  • Yewey, G. L., Duysen, E. G., Southard, J. L., and Dum, R. L., 1993, Controlled release of growth factors from a biodegradable delivery system, in: Portland Bone Symposium 1993 (J. Hollinger and A. E. Seyfer, eds.), Oregon Health Sciences University, Portland, pp. 453–454

    Google Scholar 

  • Yoda, N., 1963, Syntheses of polyanhydrides. XII. Crystalline and high melting polyamide-polyanhydride of methylenebis(p-carboxyphenyl) amide, J. Polym. Sci. Part A 1323–1338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Roskos, K.V., Maskiewicz, R. (2002). Degradable Controlled Release Systems Useful for Protein Delivery. In: Sanders, L.M., Hendren, R.W. (eds) Protein Delivery. Pharmaceutical Biotechnology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/0-306-46803-4_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-46803-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45359-5

  • Online ISBN: 978-0-306-46803-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics