Skip to main content

A First Course in Complex Analysis

  • Book
  • © 2022

Overview

Part of the book series: Synthesis Lectures on Mathematics & Statistics (SLMS)

  • 4697 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book introduces complex analysis and is appropriate for a first course in the subject at typically the third-year University level. It introduces the exponential function very early but does so rigorously. It covers the usual topics of functions, differentiation, analyticity, contour integration, the theorems of Cauchy and their many consequences, Taylor and Laurent series, residue theory, the computation of certain improper real integrals, and a brief introduction to conformal mapping. Throughout the text an emphasis is placed on geometric properties of complex numbers and visualization of complex mappings.

Similar content being viewed by others

Table of contents (8 chapters)

Authors and Affiliations

  • University of Guelph, Canada

    Allan R. Willms

About the author

Allan R. Willms is a professor in the Department of Mathematics & Statistics at the University of Guelph in Canada. He earned a B.Math. (1992) and an M.Math. (1993) from the University of Waterloo in Canada and received a Ph.D. (1997) from Cornell University in Ithaca, NY, USA. He spent five years as a faculty member in the Department of Mathematics & Statistics at the University of Canterbury in Christchurch, New Zealand, after which he moved to Guelph in 2003. He is a generalist applied mathematician and says of himself “I know a little about a lot of things but not much about anything.” His research has included neuronal ion channels, antibiotic resistance, Cheyne-Stokes respiration, resonant Hopf bifurcations, Huygens’ clocks, climate change, cat bladder measurements, parameter range reduction for ODE models, fish population dynamics, E. coli contamination in beef processing plants, epidemiology, robot path planning, cytokine storms, and pathogen survival in manure.

Bibliographic Information

Publish with us