Skip to main content
Log in

Minimizing bioavailability variations with oral controlled release formulations

What is possible?

  • Healthcare Technology Review
  • Published:
American Journal of Drug Delivery

Abstract

Despite various routes of drug delivery being explored, the oral route has continued to be the most popular route of drug administration. However, the complexities associated with the gastrointestinal tract lead to variations in the rate and extent of bioavailability of drugs administered as oral dosage forms. This variation in the bioavailability of drugs is responsible for the majority of adverse effects, lack of efficacy, and development of tolerance, etc.

This review explores the possibilities of minimizing these bioavailability variations with the use of oral controlled release (CR) dosage forms. The use of CR preparations, in lieu of the immediate preparations in itself, leads to better control over plasma levels. Furthermore, the additional benefits offered by CR products, such as the reduction in first-pass metabolism, enhanced and reproducible bioavailability with gastro retentive preparations, overcoming circadian rhythm variations, and the lesser effect of fed condition on bioavailability, can be effectively utilized for bioavailability variation minimization. However, CR products cannot be use indiscriminately. The use of CR products to serve the purpose of bioavailability variation minimization should be based on due consideration to the role of metabolizing enzymes, the permeability variations, and the area available for absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Table II
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The use of tradenames is for product identification purposes only and does not imply endorsement.

References

  1. Fix J. Oral drug delivery, small intestine and colon. In: Mathowitz E, editor. Encyclopedia of controlled drug delivery. Vol. 2. New York: John Wiley & Sons, 1999: 698–728

    Google Scholar 

  2. Gupta PK, Robinson JR. Oral controlled release delivery. In: Kydonieus A, editor. Treatise on controlled drug delivery: fundamentals, optimization, application. New York: Marcel Dekker, 1992: 255–313

    Google Scholar 

  3. Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for industry: bioavailability and bioequivalence studies for orally administered drug products — general considerations, 1st revision, March 2003 [online]. Available from URL: http://www.fda.gov/cder/guidance/5356fnl.pdf [Accessed 2003 Apr 1]

  4. Ritschel WA, Kearns GL. Handbook of basic pharmacokinetics including clinical applications. 5th ed. Washington, DC: American Pharmaceutical Association, 1999

    Google Scholar 

  5. Malinowski HJ, Henderon JD. Bioavailability and bioequivalence of oral controlled release products: a regulatory perspective. In: Welling PG, Tse FLS, editors. Pharmacokinetics: regulatory-industrial-academic perspectives. New York: Marcel Dekker, 1995: 451–78

    Google Scholar 

  6. Selen A. Factors influencing bioavailability and bioequivalence. In: Welling PG, Tse FLS, Dighe SV, editors. Pharmaceutical bioequivalence. New York: Marcel Dekker, 1991: 117–48

    Google Scholar 

  7. Welling PG, Dobrinska MR. Dosing considerations and bioavailability assessment of controlled drug delivery systems. In: Robinson RJ, Lee VHL, editors. Controlled drug delivery fundamentals and applications. New York: Marcel Dekker, 1987: 253–91

    Google Scholar 

  8. Malinowski HJ, Marroum PJ. Food and drug administration requirements for controlled release products. In: Mathowitz E, editor. Encyclopedia of controlled drug delivery. Vol. 1. New York: John Wiley & Sons, 1999: 381–95

    Google Scholar 

  9. Amidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995; 12(3): 413–20

    Article  PubMed  CAS  Google Scholar 

  10. Verma RK, Krishna DM, Garg S. Formulation aspects in the development of osmotically controlled oral drug delivery systems. J Control Release 2002; 79: 7–27

    Article  PubMed  CAS  Google Scholar 

  11. Modi NB, Lindemulder B, Gupta SK. Single- and multiple-dose pharmacokinetics of an oral once-a-day osmotic controlled-release OROS (methylphenidate HCl) formulation. J Clin Pharmacol 2000; 40(4): 379–88

    Article  PubMed  CAS  Google Scholar 

  12. Gupta SK, Shah JC, Hwang SS. Pharmacokinetic and pharmacodynamic characterization of OROS and immediate-release amitriptyline. Br J Clin Pharmacol 1999; 48(1): 71–8

    Article  PubMed  CAS  Google Scholar 

  13. Sandberg A, Abrahamsson B, Svenheden A, et al. Steady-state bioavailability and day-to-day variability of a multiple-unit (CR/ZOK) and a single-unit (OROS) delivery system of metoprolol after once-daily dosing. Pharm Res 1993; 10(1): 28–34

    Article  PubMed  CAS  Google Scholar 

  14. Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variabilities in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997; 283: 1552–62

    PubMed  CAS  Google Scholar 

  15. Gupta SK, Sathyan G. Pharmacokinetics of an oral once-a-day controlled-release oxybutynin formulation compared with immediate-release oxybutynin. J Clin Pharmacol 1999; 39(3): 289–96

    PubMed  CAS  Google Scholar 

  16. Michel MC. A benefit-risk assessment of extended-release oxybutynin. Drug Saf 2002; 25(12): 867–76

    Article  PubMed  CAS  Google Scholar 

  17. Ditropan XL prescribing information [online]. Available from URL: http://www.ditropanxl.com/professional/prescribe_info [Accessed 2003 Apr 1]

  18. Zobrist RH, Schmind B, Feick A, et al. Pharmacokinetics of the R- and S- enantiomers of oxybutynin and N-desethyloxybutynin following oral and transdermal administration of the racemate in healthy volunteers. Pharmacol Res 2001; 18(7): 1029–33

    Article  CAS  Google Scholar 

  19. Lukkari E, Hakonen T, Neuvonen PJ. The pharmacokinetics of oxybutynin is unaffected by gender and contraceptive steroids. Eur J Clin Pharmacol 1998; 53(5): 351–4

    Article  PubMed  CAS  Google Scholar 

  20. Heinig R. Clinical pharmacokinetics of nisoldipine coat-core. Clin Pharmacokinet 1998; 35(3): 191–208

    Article  PubMed  CAS  Google Scholar 

  21. Drover DR, Angst MS, Valle M, et al. Input characteristics and bioavailability after administration of immediate and a new extended-release formulation of hydromorphone in healthy volunteers. Anesthesiology 2002; 97(4): 827–36

    Article  PubMed  CAS  Google Scholar 

  22. Davidson MH, Lukacsko P, Sun JX, et al. A multiple-dose pharmacodynamic, safety, and pharmacokinetic comparison of extended- and immediate-release formulations of lovastatin. Clin Ther 2002; 24(1): 112–25

    Article  PubMed  CAS  Google Scholar 

  23. Bruguerolle B, Lemmer B. Recent advances in chronopharmacokinetics: methodological problems. Life Sci 1993; 52: 1809–24

    Article  PubMed  CAS  Google Scholar 

  24. Lemmer B. Chronopharmacokinetics: implications for drug treatment. J Pharm Pharmacol 1999; 51: 887–90

    Article  PubMed  CAS  Google Scholar 

  25. Lemmer B, Nold G, Behne S, et al. Chronopharmacokinetics and cardiovascular effects of nifedipine. Chronobiol Int 1991; 8(6): 485–94

    Article  PubMed  CAS  Google Scholar 

  26. Scheidel B, Lemmer B. Chronopharmacology of oral nitrates in healthy subjects. Chronobiol Int 1991; 8(5): 409–19

    Article  PubMed  CAS  Google Scholar 

  27. Harrison LI, Kehe CR, Ekholm BP, et al. Comparative pharmacokinetics of morning and evening doses of once-a-day theophylline capsules. J Pharm Sci 1994; 83(8): 1171–4

    Article  PubMed  CAS  Google Scholar 

  28. Thielemann AM, Manquez N, Pinilla E. Chronopharmacokinetics of theophylline administered as a controlled-release tablet. Int J Clin Pharmacol Ther 1996; 34(3): 130–3

    PubMed  CAS  Google Scholar 

  29. Krogel I, Bodmeier R. Pulsatile drug release from an insoluble capsule body controlled by an erodible plug. Pharm Res 1998; 15(3): 474–81

    Article  PubMed  CAS  Google Scholar 

  30. Krogel I, Bodmeier R. Evaluation of an enzyme-containing capsular shaped pulsatile drug delivery system. Pharm Res 1999; 16(9): 1424–9

    Article  PubMed  CAS  Google Scholar 

  31. Prisant LM. Verapamil revisited: a transition in novel drug delivery systems and outcomes. Heart Dis 2001; 3(1): 55–62

    Article  PubMed  CAS  Google Scholar 

  32. Ritchel WA. Pharmacokinetic and biopharmaceutical aspects in drug delivery. In: Tyle P, editor. Drug delivery devices. New York: Marcel Dekker Inc, 1988: 17–79

    Google Scholar 

  33. Özdemir N, Ordu S, Ozkan Y. Studies of floating dosage forms of furosemide: in vitro and in vivo evaluations of bilayer tablet formulations. Drug Dev Ind Pharm 2000; 26(8): 857–66

    Article  PubMed  Google Scholar 

  34. Gabr KE, Borg TM. Formulation and evaluation of buffered floating furosemide delivery systems. STP Pharma Sci 2000; 10(2): 181–6

    CAS  Google Scholar 

  35. Desai S, Bolton S. Floating controlled-release drug delivery system: in vitro-in vivo evaluation. Pharm Res 1993; 10: 1321–5

    Article  PubMed  CAS  Google Scholar 

  36. Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for industry: food-effect bioavailability and fed bioequivalence studies, December 2002 [online]. Available from URL: http://www.fda.gov/cder/guidance/5194fnl.pdf [Accessed 2003 Apr 1]

    Google Scholar 

  37. Benziger DP, Kaiko RF, Miotto JB, et al. Differential effects of food on the bioavailability of controlled-release oxycodone tablets and immediate-release oxycodone solution. J Pharm Sci 1996; 85(4): 407–10

    Article  PubMed  CAS  Google Scholar 

  38. Abrahamsson B, Alpsten M, Bake B, et al. Drug absorption from nifedipine hydrophilic matrix extended-release (ER) tablet-comparison with an osmotic pump tablet and effect of food. J Control Release 1998; 52(3): 301–10

    Article  PubMed  CAS  Google Scholar 

  39. Lukkari E, Castren-Kortekangas P, Juhakoski A, et al. Effect of food on the bioavailability of oxybutynin from a controlled release tablet. Eur J Clin Pharmacol 1996; 50(3): 221–3

    Article  PubMed  CAS  Google Scholar 

  40. McLean A, Browne S, Zhang Y, et al. The influence of food on the bioavailability of a twice-daily controlled release carbamazepine formulation. J Clin Pharmacol 2001; 41(2): 183–6

    Article  PubMed  CAS  Google Scholar 

  41. Guay DR, Gustavson LE, Devcich KJ, et al. Pharmacokinetics and tolerability of extended-release clarithromycin. Clin Ther 2001; 23(4): 566–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge CSIR, New Delhi, for providing funding for research project no. 01(1712)/01/EMR-II. The views expressed by the authors do not necessarily reflect the views of CSIR. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Garg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushal, A.M., Garg, S. Minimizing bioavailability variations with oral controlled release formulations. Am J Drug Deliv 1, 103–112 (2003). https://doi.org/10.2165/00137696-200301020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00137696-200301020-00002

Keywords

Navigation