Skip to main content

Advertisement

Log in

Proteomics in Gynecologic Malignancies

Advances to Date

  • Current Opinion
  • Published:
American Journal of Cancer

Abstract

Proteomics, the study of the proteome and its activation state, integrates several fundamental techniques: high-throughput protein purification and profiling, the use of genomic and proteomic databases, and mass spectrometry. In gynecologic oncology, proteomics will contribute greatly to our understanding of the molecular basis of cancer growth. It holds promise for the identification of potential pathologic markers and therapeutic targets and for providing information in clinical applications. This article reviews recent progress in proteomic techniques and their applications in the search for biomarkers for early diagnosis, disease monitoring, treatment response predicting, therapy tailoring, and identification of novel molecular targets, in gynecologic oncology. However, a major challenge of removing high-abundance proteins from biologic complexes still remains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table II
Table II
Table II
Table III

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement

References

  1. Jemal A, Tiwari RC, Murray T, et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56: 106–32

    Article  PubMed  Google Scholar 

  2. American Cancer Society [online]. Available from URL: http://www.cancer.org [Accessed 2006 Sep 22]

  3. Shimada M, Kigawa J, Kanamori Y, et al. Outcome of patients with early ovarian cancer undergoing three courses of adjuvant chemotherapy following complete surgical staging. Int J Gynecol Cancer 2005; 15(4): 601–5

    Article  PubMed  CAS  Google Scholar 

  4. Diamandis EP. Tumor markers: past, present, and future. In: Diamandis EP, Lilja A, Chan D, et al, editors. Tumor markers. Washington,DC: American Association for Clinical Chemistry, 200

    Google Scholar 

  5. Bast Jr RC, Xu FJ, Yu YH, et al. CA 125: the past and the future. Int J Biol Markers 1998; 13(4): 179–87

    PubMed  CAS  Google Scholar 

  6. Bandera CA, Ye B, Mok SC. New technologies for the identification of markers for early detection of ovarian cancer. Curr Opin Obstet Gynecol 2003; 15(1): 51–5

    Article  PubMed  Google Scholar 

  7. Mills GB, Bast Jr RC, Srivastava S. Future for ovarian cancer screening: novel markers from emerging technologies of transcriptional profiling and proteomics. J Natl Cancer Inst 2001; 93(19): 1437–9

    Article  PubMed  CAS  Google Scholar 

  8. Petricoin EF, Zoon KC, Kohn EC, et al. Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov 2002; 1(9): 683–95

    Article  PubMed  CAS  Google Scholar 

  9. Hanash S. Disease proteomics. Nature 2003; 422(6928): 226–32

    Article  PubMed  CAS  Google Scholar 

  10. Krieg RC, Paweletz CP, Liotta LA, et al. Clinical proteomics for cancer biomarker discovery and therapeutic targeting. Technol Cancer Res Treat 2002; 1(4): 263–72

    PubMed  CAS  Google Scholar 

  11. Wu W, Hu W, Kavanagh JJ. Proteomics in cancer research. Int J Gynecol Cancer 2002; 12(5): 409–23

    Article  PubMed  CAS  Google Scholar 

  12. Anderson L, Anderson NG. High resolution two-dimensional electrophoresis of human plasma proteins. Proc Natl Acad Sci U S A 1977; 74(12): 5421–5

    Article  PubMed  CAS  Google Scholar 

  13. Adkins JN, Varnum SM, Auberry KJ, et al. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol Cell Proteomics 2002; 1(12): 947–55

    Article  PubMed  CAS  Google Scholar 

  14. Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997; 18(11): 2071–7

    Article  PubMed  CAS  Google Scholar 

  15. Alban A, David SO, Bjorkesten L, et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 2003; 3(1): 36–44

    Article  PubMed  CAS  Google Scholar 

  16. Pieper R, Su Q, Gatlin CL, et al. Multi-component immunoaffinity subtraction chromatography: an innovative step towards a comprehensive survey of the human plasma proteome. Proteomics 2003; 3(4): 422–32

    Article  PubMed  CAS  Google Scholar 

  17. Zolotarjova N, Martosella J, Nicol G, et al. Differences among techniques for high-abundant protein depletion. Proteomics 2005; 5(13): 3304–13

    Article  PubMed  CAS  Google Scholar 

  18. Huang HL, Stasyk T, Morandell S, et al. Enrichment of low-abundant serum proteins by albumin/immunoglobulin G immunoaffinity depletion under partly denaturing conditions. Electrophoresis 2005; 26(14): 2843–9

    Article  PubMed  CAS  Google Scholar 

  19. Thulasiraman V, Lin S, Gheorghiu L, et al. Reduction of the concentration difference of proteins in biological liquids using a library of combinatorial ligands. Electrophoresis 2005; 26(18): 3561–71

    Article  PubMed  CAS  Google Scholar 

  20. Huang L, Harvie G, Feitelson JS, et al. Immunoaffinity separation of plasma proteins by IgY microbeads: meeting the needs of proteomic sample preparation and analysis. Proteomics 2005; 5(13): 3314–28

    Article  PubMed  CAS  Google Scholar 

  21. Washburn MP, Wolters D, Yates III JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001; 19(3): 242–7

    Article  PubMed  CAS  Google Scholar 

  22. Baggerman G, Vierstraete E, De Loof A, et al. Gel-based versus gel-free proteomics: a review. Comb Chem High Throughput Screen 2005; 8(8): 669–77

    Article  PubMed  CAS  Google Scholar 

  23. Fung ET, Thulasiraman V, Weinberger SR, et al. Protein biochips for differential profiling. Curr Opin Biotechnol 2001; 12(1): 65–9

    Article  PubMed  CAS  Google Scholar 

  24. Diamandis EP. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol Cell Proteomics 2004; 3(4): 367–78

    Article  PubMed  CAS  Google Scholar 

  25. Yates III JR. Mass spectrometry: from genomics to proteomics. Trends Genet 2000; 16(1): 5–8

    Article  PubMed  CAS  Google Scholar 

  26. Koomen J, Hawke D, Kobayashi R. Developing an understanding of proteomics: an introduction to biological mass spectrometry. Cancer Invest 2005; 23(1): 47–59

    Article  PubMed  CAS  Google Scholar 

  27. Stutz H. Advances in the analysis of proteins and peptides by capillary electrophoresis with matrix-assisted laser desorption/ionization and electrospray-mass spectrometry detection. Electrophoresis 2005; 26(7–8): 1254–90

    Article  PubMed  CAS  Google Scholar 

  28. Yates III JR, Carmack E, Hays L, et al. Automated protein identification using microcolumn liquid chromatography-tandem mass spectrometry. Methods Mol Biol 1999; 112: 553–69

    PubMed  CAS  Google Scholar 

  29. Yates III JR, McCormack AL, Schieltz D, et al. Direct analysis of protein mixtures by tandem mass spectrometry. J Protein Chem 1997; 16(5): 495–7

    Article  PubMed  CAS  Google Scholar 

  30. Dongre AR, Eng JK, Yates III JR. Emerging tandem-mass-spectrometry techniques for the rapid identification of proteins. Trends Biotechnol 1997; 15(10): 418–25

    Article  PubMed  CAS  Google Scholar 

  31. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics 2000; 16(4): 404–5

    Article  PubMed  CAS  Google Scholar 

  32. Ping P, Vondriska TM, Creighton CJ, et al. A functional annotation of subproteomes in human plasma. Proteomics 2005; 5(13): 3506–19

    Article  PubMed  CAS  Google Scholar 

  33. O’Malley CD, Cress RD, Campleman SL, et al. Survival of Californian women with epithelial ovarian cancer, 1994–1996: a population-based study. Gynecol Oncol 2003; 91(3): 608–15

    Article  PubMed  Google Scholar 

  34. Tingulstad S, Skjeldestad FE, Halvorsen TB, et al. Survival and prognostic factors in patients with ovarian cancer. Obstet Gynecol 2003; 101(5 Pt 1): 885–91

    Article  PubMed  Google Scholar 

  35. Harries M, Kaye SB. Recent advances in the treatment of epithelial ovarian cancer. Expert Opin Investig Drugs 2001; 10(9): 1715–24

    Article  PubMed  CAS  Google Scholar 

  36. Bast Jr RC, Klug TL, StJohn E, et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med 1983; 309(15): 883–7

    Article  PubMed  Google Scholar 

  37. Hogdall CK, Mogensen O, Tabor A, et al. The role of serum tetranectin, CA 125, and a combined index as tumor markers in women with pelvic tumors. Gynecol Oncol 1995; 56(1): 22–8

    Article  PubMed  CAS  Google Scholar 

  38. Peters-Engl C, Medl M, Ogris E, et al. Tumor-associated trypsin inhibitor (TATI) and cancer antigen 125 (CA125) in patients with epithelial ovarian cancer. Anticancer Res 1995; 15(6B): 2727–30

    PubMed  CAS  Google Scholar 

  39. Fish RG, Shelley MD, Maughan T, et al. The clinical value of serum CA125 levels in ovarian cancer patients receiving platinum therapy. Eur J Cancer Clin Oncol 1987; 23(6): 831–5

    Article  PubMed  CAS  Google Scholar 

  40. Jacobs I, Davies AP, Bridges J, et al. Prevalence screening for ovarian cancer in postmenopausal women by CA 125 measurement and ultrasonography. BMJ 1993; 306(6884): 1030–4

    Article  PubMed  CAS  Google Scholar 

  41. Xu Y, Shen Z, Wiper DW, et al. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA 1998; 280(8): 719–23

    Article  PubMed  CAS  Google Scholar 

  42. Hogdall EV, Hogdall CK, Kjaer SK, et al. OVX1 radioimmunoassay results are dependent on the method of sample collection and storage. Clin Chem 1999; 45(5): 692–4

    PubMed  CAS  Google Scholar 

  43. Engelen MJ, deBruijn HW, Hollema H, et al. Serum CA 125, carcinoembryonic antigen, and CA 19-9 as tumor markers in borderline ovarian tumors. Gynecol Oncol 2000; 78(1): 16–20

    Article  PubMed  CAS  Google Scholar 

  44. Klockars M, Pettersson T, Froseth B, et al. Concentration of tumor-associated trypsin inhibitor (TATI) in pleural effusions. Chest 1990; 98(5): 1159–64

    Article  PubMed  CAS  Google Scholar 

  45. Mok SC, Chao J, Skates S, et al. Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst 2001; 93(19): 1458–64

    Article  PubMed  CAS  Google Scholar 

  46. Mazurek A, Niklinski J, Laudanski T, et al. Clinical tumour markers in ovarian cancer. Eur J Cancer Prev 1998; 7(1): 23–35

    PubMed  CAS  Google Scholar 

  47. BastJr RC, Urban N, Shridhar V, et al. Early detection of ovarian cancer: promise and reality. Cancer Treat Res 2002; 107: 61–97

    PubMed  Google Scholar 

  48. Micke O, Bruns F, Schafer U, et al. The impact of squamous cell carcinoma (SCC) antigen in patients with advanced cancer of uterine cervix treated with (chemo)radiotherapy. Anticancer Res 2005; 25(3A): 1663–6

    PubMed  Google Scholar 

  49. Ogino I, Nakayama H, Kitamura T, et al. The curative role of radiotherapy in patients with isolated para-aortic node recurrence from cervical cancer and value of squamous cell carcinoma antigen for early detection. Int J Gynecol Cancer 2005; 15(4): 630–8

    Article  PubMed  CAS  Google Scholar 

  50. Cherchi PL, Dessole S, Ruiu GA, et al. The value of serum CA 125 and association CA 125/CA 19-9 in endometrial carcinoma. Eur J Gynaecol Oncol 1999; 20(4): 315–7

    PubMed  CAS  Google Scholar 

  51. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002; 359(9306): 572–7

    Article  PubMed  CAS  Google Scholar 

  52. Alexe G, Alexe S, Liotta LA, et al. Ovarian cancer detection by logical analysis of proteomic data. Proteomics 2004; 4(3): 766–83

    Article  PubMed  CAS  Google Scholar 

  53. Conrads TP, Fusaro VA, Ross S, et al. High-resolution serum proteomic features for ovarian cancer detection. Endocr Relat Cancer 2004; 11(2): 163–78

    Article  PubMed  CAS  Google Scholar 

  54. Diamandis EP. Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J Natl Cancer Inst 2004; 96(5): 353–6

    Article  PubMed  Google Scholar 

  55. Jacobs IJ, Menon U. Progress and challenges in screening for early detection of ovarian cancer. Mol Cell Proteomics 2004; 3(4): 355–66

    Article  PubMed  CAS  Google Scholar 

  56. Rogers MA, Clarke P, Noble J, et al. Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility. Cancer Res 2003; 63(20): 6971–83

    PubMed  CAS  Google Scholar 

  57. Baggerly KA, Morris JS, Edmonson SR, et al. Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J Natl Cancer Inst 2005; 97(4): 307–9

    Article  PubMed  CAS  Google Scholar 

  58. Baggerly KA, Edmonson SR, Morris JS, et al. High-resolution serum proteomic patterns for ovarian cancer detection. Endocr Relat Cancer 2004; 11(4): 583–4

    Article  PubMed  CAS  Google Scholar 

  59. Diamandis EP. Point: proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? Clin Chem 2003; 49(8): 1272–5

    Article  PubMed  CAS  Google Scholar 

  60. Sorace JM, Zhan M. A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics 2003; 4: 24

    Article  PubMed  Google Scholar 

  61. Wong YF, Cheung TH, Lo KW, et al. Protein profiling of cervical cancer by protein-biochips: proteomic scoring to discriminate cervical cancer from normal cervix. Cancer Lett 2004; 211(2): 227–34

    Article  PubMed  CAS  Google Scholar 

  62. He QY, Zhou Y, Wong E, et al. Proteomic analysis of a preneoplastic phenotype in ovarian surface epithelial cells derived from prophylactic oophorectomies. Gynecol Oncol 2005; 98(1): 68–76

    Article  PubMed  CAS  Google Scholar 

  63. Smith-Beckerman DM, Fung KW, Williams KE, et al. Proteome changes in ovarian epithelial cells derived from women with BRCA1 mutations and family histories of cancer. Mol Cell Proteomics 2005; 4(2): 156–68

    PubMed  CAS  Google Scholar 

  64. Zhang Z, BastJr RC, Yu Y, et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 2004; 64(16): 5882–90

    Article  PubMed  CAS  Google Scholar 

  65. Kozak KR, Su F, Whitelegge JP, et al. Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics 2005; 5(17): 4589–96

    Article  PubMed  CAS  Google Scholar 

  66. Ott HW, Lindner H, Sarg B, et al. Calgranulins in cystic fluid and serum from patients with ovarian carcinomas. Cancer Res 2003; 63(21): 7507–14

    PubMed  CAS  Google Scholar 

  67. Jones MB, Krutzsch H, Shu H, et al. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2002; 2(1): 76–84

    Article  PubMed  CAS  Google Scholar 

  68. Ye B, Cramer DW, Skates SJ, et al. Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clin Cancer Res 2003; 9(8): 2904–11

    PubMed  CAS  Google Scholar 

  69. Ahmed N, Barker G, Oliva KT, et al. Proteomic-based identification of haptoglobin-1 precursor as a novel circulating biomarker of ovarian cancer. Br J Cancer 2004; 91(1): 129–40

    Article  PubMed  CAS  Google Scholar 

  70. Mueller WK, Handschumacher R, Wade ME. Serum haptoglobin in patients with ovarian malignancies. Obstet Gynecol 1971; 38(3): 427–35

    PubMed  CAS  Google Scholar 

  71. Fung ET, Yip TT, Lomas L, et al. Classification of cancer types by measuring variants of host response proteins using SELDI serum assays. Int J Cancer 2005; 115(5): 783–9

    Article  PubMed  CAS  Google Scholar 

  72. Ahmed N, Oliva KT, Barker G, et al. Proteomic tracking of serum protein isoforms as screening biomarkers of ovarian cancer. Proteomics 2005; 5(17): 4625–36

    Article  PubMed  CAS  Google Scholar 

  73. Mahlck CG, Grankvist K. Plasma prealbumin in women with epithelial ovarian carcinoma. Gynecol Obstet Invest 1994; 37(2): 135–40

    Article  PubMed  CAS  Google Scholar 

  74. Langlois MR, Delanghe JR. Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem 1996; 42(10): 1589–600

    PubMed  CAS  Google Scholar 

  75. Hu W, Wu W, Kobayashi R, et al. Proteomics in cancer screening and management in gynecologic cancer. Curr Oncol Rep 2004; 6(6): 456–62

    Article  PubMed  Google Scholar 

  76. Dobryszycka W, Katnik-Prastowska I, Gerber J, et al. Serum haptoglobin, CA 125 and interleukin 6 levels in malignant and non-malignant tumors of the ovary. Arch Immunol Ther Exp (Warsz) 1999; 47(4): 229–36

    CAS  Google Scholar 

  77. Pu XP, Iwamoto A, Nishimura H, et al. Purification and characterization of a novel substrate for plasma kallikrein (PK-120) in human plasma. Biochim Biophys Acta 1994; 1208(2): 338–43

    Article  PubMed  Google Scholar 

  78. Nishimura H, Kakizaki I, Muta T, et al. cDNA and deduced amino acid sequence of human PK-120, a plasma kallikrein-sensitive glycoprotein. FEBS Lett 1995; 357(2): 207–11

    Article  PubMed  CAS  Google Scholar 

  79. Huang L, Yoneda M, Kimata K. A serum-derived hyaluronan-associated protein (SHAP) is the heavy chain of the inter alpha-trypsin inhibitor. J Biol Chem 1993; 268(35): 26725–30

    PubMed  CAS  Google Scholar 

  80. Wassell J. Haptoglobin: function and polymorphism. Clin Lab 2000; 46(11–12): 547–52

    PubMed  CAS  Google Scholar 

  81. Ohkawa K, Takada K, Takizawa N, et al. Clear cell carcinoma of the human ovary synthesizes and secretes a transferrin with microheterogeneity of lectin affinity. FEBS Lett 1990; 270(1–2): 19–23

    Article  PubMed  CAS  Google Scholar 

  82. Donate R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001; 33(7): 637–68

    Article  Google Scholar 

  83. Kerkhoff C, Klempt M, Kaever V, et al. The two calcium-binding proteins, S100A8 and S100A9, are involved in the metabolism of arachidonic acid in human neutrophils. J Biol Chem 1999; 274(46): 32672–9

    Article  PubMed  CAS  Google Scholar 

  84. Schafer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 1996; 21(4): 134–40

    PubMed  CAS  Google Scholar 

  85. Sinha P, Kohl S, Fischer J, et al. Identification of novel proteins associated with the development of chemoresistance in malignant melanoma using two-dimensional electrophoresis. Electrophoresis 2000; 21(14): 3048–57

    Article  PubMed  CAS  Google Scholar 

  86. Galat A. Sequence diversification of the FK506-binding proteins in several different genomes. Eur J Biochem 2000; 267(16): 4945–59

    Article  PubMed  CAS  Google Scholar 

  87. Thornalley PJ. Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem Biol Interact 1998; 111-112: 137–51

    Article  PubMed  CAS  Google Scholar 

  88. Sakamoto H, Mashima T, Kizaki A, et al. Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood 2000; 95(10): 3214–8

    PubMed  CAS  Google Scholar 

  89. Wang H, Kachman MT, Schwartz DR, et al. Comprehensive proteome analysis of ovarian cancers using liquid phase separation, mass mapping and tandem mass spectrometry: a strategy for identification of candidate cancer biomarkers. Proteomics 2004; 4(8): 2476–95

    Article  PubMed  CAS  Google Scholar 

  90. Fuhrman MP, Charney P, Mueller CM. Hepatic proteins and nutrition assessment. J Am Diet Assoc 2004; 104(8): 1258–64

    Article  PubMed  CAS  Google Scholar 

  91. Schweigert FJ, Sehouli J. Transthyretin, a biomarker for nutritional status and ovarian cancer. Cancer Res 2005; 65(3): 1114

    PubMed  CAS  Google Scholar 

  92. vonEggeling F, Junker K, Fiedle W, et al. Mass spectrometry meets chip technology: a new proteomic tool in cancer research? Electrophoresis 2001; 22(14): 2898–902

    Article  Google Scholar 

  93. Choi YP, Kang S, Hong S, et al. Proteomic analysis of progressive factors in uterine cervical cancer. Proteomics 2005; 5(6): 1481–93

    Article  PubMed  CAS  Google Scholar 

  94. Bae SM, Lee CH, Cho YL, et al. Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients. Gynecol Oncol 2005; 99(1): 26–35

    Article  PubMed  CAS  Google Scholar 

  95. Soh Y, Goto S, Kitajima M, et al. Nuclear localisation of glutathione S-transferase pi is an evaluation factor for drug resistance in gynaecological cancers. Clin Oncol (R Coll Radiol) 2005; 17(4): 264–70

    Article  CAS  Google Scholar 

  96. Park CS, Joo IS, Song SY, et al. An immunohistochemical analysis of heat shock protein 70, p53, and estrogen receptor status in carcinoma of the uterine cervix. Gynecol Oncol 1999; 74(1): 53–60

    Article  PubMed  CAS  Google Scholar 

  97. Smedts F, Ramaekers F, Leube RE, et al. Expression of keratins 1, 6, 15, 16, and 20 in normal cervical epithelium, squamous metaplasia, cervical intraepithelial neoplasia, and cervical carcinoma. Am J Pathol 1993; 142(2): 403–12

    PubMed  CAS  Google Scholar 

  98. Alkushi A, Irving J, Hsu F, et al. Immunoprofile of cervical and endometrial adenocarcinomas using a tissue microarray. Virchows Arch 2003; 442(3): 271–7

    PubMed  CAS  Google Scholar 

  99. Nasu K, Etoh Y, Yoshimatsu J, et al. Serum levels of cytokeratin 19 fragments in cervical cancer. Gynecol Obstet Invest 1996; 42(4): 267–70

    Article  PubMed  CAS  Google Scholar 

  100. Wu SH, Zhang J, Li Y, et al. Expression of ETV5 and MMP-7 in early stage cervical squamous cell carcinoma and its role in lymphatic metastasis. Ai Zheng 2006; 25(3): 315–9

    PubMed  CAS  Google Scholar 

  101. Rihakova P, Brychtova S, Kotrsova L, et al. DNA ploidy correlates with grade, proliferation and clinical outcome but not with presence of human oncogenic HPVs or expression of Bcl-2 in preneoplastic and neoplastic lesions of the uterine cervix. Neoplasma 2001; 48(4): 274–7

    PubMed  CAS  Google Scholar 

  102. Reesink-Peters N, van der Velden J, Ten Hoor KA, et al. Preoperative serum squamous cell carcinoma antigen levels in clinical decision making for patients with early-stage cervical cancer. J Clin Oncol 2005; 23(7): 1455–62

    Article  PubMed  Google Scholar 

  103. Skomedal H, Kristensen GB, Lie AK, et al. Aberrant expression of the cell cycle associated proteins TP53, MDM2, p21, p27, cdk4, cyclin D1, RB, and EGFR in cervical carcinomas. Gynecol Oncol 1999; 73(2): 223–8

    Article  PubMed  CAS  Google Scholar 

  104. Lema C, Wiktorowicz JE, Dinh TA, et al. Biomarkers for cervical cancer generated by proteomic analysis of exfoliated cervical epithelial cells [abstract no. 4455]. 97th AACR Annual Meeting; 2006 Apr 1–5; Washington, DC

  105. Lee KA, Shim JH, Kho CW, et al. Protein profiling and identification of modulators regulated by the E7 oncogene in the C33A cell line by proteomics and genomics. Proteomics 2004; 4(3): 839–48

    Article  PubMed  CAS  Google Scholar 

  106. Yim EK, Meoyng J, Namakoong SE, et al. Genomic and proteomic expression patterns in HPV-16 E6 gene transfected stable human carcinoma cell lines. DNA Cell Biol 2004; 23(12): 826–35

    Article  PubMed  CAS  Google Scholar 

  107. Leykauf K, Salek M, Schluter H, et al. Identification of membrane proteins differentially expressed in human papillomavirus type 16 E5-transfected human keratinocytes by nanoelectrospray ionization mass spectrometry. J Gen Virol 2004; 85(Pt 6): 1427–31

    Article  PubMed  CAS  Google Scholar 

  108. Lee KA, Kang JW, Shim JH, et al. Protein profiling and identification of modulators regulated by human papillomavirus 16 E7 oncogene in HaCaT keratinocytes by proteomics. Gynecol Oncol 2005; 99(1): 142–52

    Article  PubMed  CAS  Google Scholar 

  109. DeSouza L, Diehl G, Rodrigues MJ, et al. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res 2005; 4(2): 377–86

    Article  PubMed  CAS  Google Scholar 

  110. Yang EC, Guo J, Diehl G, et al. Protein expression profiling of endometrial malignancies reveals a new tumor marker: chaperonin 10. J Proteome Res 2004; 3(3): 636–43

    Article  PubMed  CAS  Google Scholar 

  111. Guo J, Yang EC, Desouza L, et al. A strategy for high-resolution protein identification in surface-enhanced laser desorption/ionization mass spectrometry: Calgranulin A and chaperonin 10 as protein markers for endometrial carcinoma. Proteomics 2005; 5(7): 1953–66

    Article  PubMed  CAS  Google Scholar 

  112. Yoshizaki T, Enomoto T, Nakashima R, et al. Altered protein expression in endometrial carcinogenesis. Cancer Lett 2005; 226(2): 101–6

    Article  PubMed  CAS  Google Scholar 

  113. Yavelow J, Tuccillo A, Kadner SS, et al. Alpha 1-antitrypsin blocks the release of transforming growth factor-alpha from MCF-7 human breast cancer cells. J Clin Endocrinol Metab 1997; 82(3): 745–52

    Article  PubMed  CAS  Google Scholar 

  114. Tummala MK, McGuire WP. Recurrent ovarian cancer. Clin Adv Hematol Oncol 2005; 3(9): 723–36

    PubMed  Google Scholar 

  115. Gordon AN, Fleagle JT, Guthrie D, et al. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 2001; 19(14): 3312–22

    PubMed  CAS  Google Scholar 

  116. Friedlander M, Millward MJ, Bell D, et al. A phase II study of gemcitabine in platinum pre-treated patients with advanced epithelial ovarian cancer. Ann Oncol 1998; 9(12): 1343–5

    Article  PubMed  CAS  Google Scholar 

  117. Salzberg M, Thurlimann B, Bonnefois H, et al. Current concepts of treatment strategies in advanced or recurrent ovarian cancer. Oncology 2005; 68(4–6): 293–8

    Article  PubMed  Google Scholar 

  118. Rose PG, Blessing JA, Mayer AR, et al. Prolonged oral etoposide as second-line therapy for platinum-resistant and platinum-sensitive ovarian carcinoma: a Gynecologic Oncology Group study. J Clin Oncol 1998; 16(2): 405–10

    PubMed  CAS  Google Scholar 

  119. Stevens EV, Liotta LA, Kohn EC. Proteomic analysis for early detection of ovarian cancer: a realistic approach? Int J Gynecol Cancer 2003; 13Suppl. 2: 133–9

    Article  PubMed  Google Scholar 

  120. Nishizuka S, Charboneau L, Young L, et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc Natl Acad Sci U S A 2003; 100(24): 14229–34

    Article  PubMed  CAS  Google Scholar 

  121. Reyzer ML, Caldwell RL, Dugger TC, et al. Early changes in protein expression detected by mass spectrometry predict tumor response to molecular therapeutics. Cancer Res 2004; 64(24): 9093–100

    Article  PubMed  CAS  Google Scholar 

  122. Castagna A, Antonioli P, Astner H, et al. A proteomic approach to cisplatin resistance in the cervix squamous cell carcinoma cell line A431. Proteomics 2004; 4(10): 3246–67

    Article  PubMed  CAS  Google Scholar 

  123. Alvarez E, Gonzalez-Santiago L, SuarezY, et al. Proteomic analysis of proteins differentially-expressed in Aplidin? resistant human cancer cells [abstract no. 1385]. AACR Annual Meeting; 2006 Apr 1–5; Washington, DC

  124. Stewart JJ, White JT, Yan X, et al. Proteins associated with cisplatin resistance in ovarian cancer cells identified by quantitative proteomics technology and integrated with mRNA expression levels. Mol Cell Proteomics 2006Mar; 5(3): 433–43

    PubMed  CAS  Google Scholar 

  125. Lee SC, Tan P, Watson M, et al. Tumor genomics and proteomics and drug pharmacokinetics in predicting chemotherapy response in breast cancer [abstract no. 3009]. 41st Annual Meeting American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL)

  126. Sinha P, Poland J, Kohl S, et al. Study of the development of chemoresistance in melanoma cell lines using proteome analysis. Electrophoresis 2003; 24(14): 2386–404

    Article  PubMed  CAS  Google Scholar 

  127. Helman LJ, Yeung C, EspinaV, et al. Proteomic profiling identifies prognostic subsets in Rhabdomyosarcoma (RMS) [abstract no. 9502]. 41st Annual Meeting American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL)

  128. Salmon JS, Sandler A, Billheimer D, et al. MALDI-TOF mass spectrometry proteomic profiling to discriminate response to the combination of bevacizumab and erlotinib in non-small cell lung cancer (NSCLC) [abstract no. 7022]. 41st Annual Meeting American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL)

  129. Kassar M, Yu Z, BamiasA, et al. In situ proteomics of biomarker expression in epithelial ovarian cancer [abstract no. 5041]. 41st Annual Meeting American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL)

  130. Hu W, Wu W, Yeung SC, et al. Increased expression of heat shock protein 70 in adherent ovarian cancer and mesothelioma following treatment with manumycin, a farnesyl transferase inhibitor. Anticancer Res 2002; 22(2A): 665–72

    PubMed  CAS  Google Scholar 

  131. Patel B, He AY, Li X, et al. Molecular mechanisms of action of imatinib mesylate (Gleevec) in ovarian cancer: a proteomic analysis [abstracts no. LB-260]. Proceedings of the American Association for Cancer Research; 2005 Apr 16–20; Anaheim (CA)

  132. Lee KH, Yim EK, Kim CJ, et al. Proteomic analysis of anti-cancer effects by paclitaxel treatment in cervical cancer cells. Gynecol Oncol 2005; 98(1): 45–53

    Article  PubMed  CAS  Google Scholar 

  133. Yim EK, Lee KH, Bae JS, et al. Proteomic analysis of antiproliferative effects by treatment of 5-fluorouracil in cervical cancer cells. DNA Cell Biol 2004; 23(11): 769–76

    Article  PubMed  CAS  Google Scholar 

  134. Posadas EM, Espina V, Kwitkowski V, et al. Molecular signal profiling in patients with ovarian cancer treated with imatinib mesylate [abstract no. 2063]. Proceedings of the American Association for Cancer Research; 2005 Apr 16–20; Anaheim (CA)

  135. Petricoin E, Wulfkuhle J, Espina V, et al. Clinical proteomics: revolutionizing disease detection and patient tailoring therapy. J Proteome Res 2004; 3(2): 209–17

    Article  PubMed  CAS  Google Scholar 

  136. Posadas EM, Hussain MM, Espina V, et al. A phase II clinical trial with proteomic profiling of imatinib mesylate in patients with refractory or relapsed epithelial ovarian cancer (EOC) [abstract no. 9651]. Proceedings American Society of Clinical Oncology; 2004.Tun 5–8; New Orleans (LA)

  137. Liel MS, Espina V, Pazzagli C, et al. Phase II study of gefitinib in epithelial ovarian cancer: Proteomic pathway profiling in tumor biopsies [abstract no. 5745]. Proceedings of the American Association for Cancer Research; 2005 Apr 16–20; Anaheim (CA)

  138. Young TW, Mei FC, Yang G, et al. Activation of antioxidant pathways in rasmediated oncogenic transformation of human surface ovarian epithelial cells revealed by functional proteomics and mass spectrometry. Cancer Res 2004; 64(13): 4577–84

    Article  PubMed  CAS  Google Scholar 

  139. Young T, Mei F, Liu J, et al. Proteomics analysis of H-RAS-mediated oncogenic transformation in a genetically defined human ovarian cancer model. Oncogene 2005; 24(40): 6174–84

    Article  PubMed  CAS  Google Scholar 

  140. Hu W, Kavanagh JJ. Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 2003; 4(12): 721–9

    Article  PubMed  CAS  Google Scholar 

  141. Hu W, Wu W, Verschraegen CF, et al. Proteomic identification of heat shock protein 70 as a candidate target for enhancing apoptosis induced by farnesyl transferase inhibitor. Proteomics 2003; 3(10): 1904–11

    Article  PubMed  CAS  Google Scholar 

  142. Sheehan KM, Fishman DA, LiottaLA, et al. Signal pathway profiling of metastatic epithelial ovarian carcinoma using protein microarrays: identification of new drug targets [abstract no: 2635]. Proceedings of the American Association for Cancer Research; 2005 Apr 16–20; Anaheim (CA)

  143. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1(11): 845–67

    Article  PubMed  CAS  Google Scholar 

  144. Corthals GL, Wasinger VC, Hochstrasser DF, et al. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 2000; 21(6): 1104–15

    Article  PubMed  CAS  Google Scholar 

  145. Issaq HJ. The role of separation science in proteomics research. Electrophoresis 2001; 22(17): 3629–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Kate Kelly and Beth Notzon in the Department of Scientific Publications at M.D. Anderson Cancer Center for their assistance in editing the manuscript.

No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.F., Hu, W., Fu, S. et al. Proteomics in Gynecologic Malignancies. Am J Cancer 5, 299–317 (2006). https://doi.org/10.2165/00024669-200605050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024669-200605050-00002

Keywords

Navigation