Skip to main content
Log in

Current Status and Future Prospects of Gene Therapy

Focus on Allovectin-7® in the Treatment of Metastatic Melanoma

  • Current Opinion
  • Published:
American Journal of Cancer

Abstract

Since the discovery of DNA and the subsequent recognition that genetic defects (either inherited or acquired) can be responsible for various disease states, the concept of gene therapy has been extremely appealing. However, despite intensive work in this field of medicine, gene therapy has yet to make a major impact on the treatment of patients. Many technical challenges exist that must be overcome before gene therapy can be put into widespread practice. The gene delivery system (vector) encounters extracellular and intracellular barriers, must be nontoxic and nonimmunogenic, and must allow sufficient expression of the gene of interest. Many vectors have been created in attempts to overcome these problems; however, the ideal expression vector for use in humans has yet to be identified. Both inherited and acquired diseases may potentially benefit from gene therapy. X-linked severe combined immunodeficiency-X1 is an inherited disease in which gene therapy is not only being actively pursued as a potentially curative treatment, but some exciting progress has been made in recent years. In addition, acquired diseases, such as cancer, often have defined genetic alterations and, thus, are potential candidates for treatment with gene therapy. For example, malignant melanoma, a tumor that is notoriously chemoresistant, may avoid immune recognition by progressive loss of cell surface MHC class I molecules. Allovectin-7® is a DNA plasmid containing the gene encoding human MHC class I HLA-B7. Early phase I/II studies of Allovectin-7® in patients with metastatic melanoma have shown some encouraging results. It is one of many examples of how gene therapy may affect cancer treatment in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II

Similar content being viewed by others

References

  1. Watson JD, Crick FH. A structure for deoxyribose nucleic acid. Nature 1953Apr 25; 171(4356): 737–8

    Article  PubMed  CAS  Google Scholar 

  2. Friedmann T, Roblin R. Gene therapy for human genetic disease? Science 1972; 75: 949–55

    Article  Google Scholar 

  3. Balicki D, Beutler E. Gene therapy of human disease. Medicine 2002; 81(1): 69–86

    Article  PubMed  CAS  Google Scholar 

  4. Verma IM, Somia N. Gene therapy: promises, problems and prospects. Nature 1997Sep 18; 389: 239–42

    Article  PubMed  CAS  Google Scholar 

  5. US National Institutes of Health [online]. Available from URL: http://http://www.chnicaltrials.gov/ct/action/GetStudy [Accessed 2005 Jun 2]

  6. Kouraklis G. Gene therapy for cancer: from the laboratory to the patient. Dig Dis Sci 2000Jun; 45(6): 1045–52

    Article  PubMed  CAS  Google Scholar 

  7. Galanis E, Vile R, Russell SJ. Delivery systems intended for in vivo gene therapy of cancer: targeting and replication competent viral vectors. Crit Rev Oncol Hematol 2001; 38: 177–9

    Article  PubMed  CAS  Google Scholar 

  8. Morsy MA, Kohnosuke M, Clemens P, et al. Progress toward human gene therapy. JAMA 1993Nov 17; 270(19): 2238–45

    Article  Google Scholar 

  9. Kouraklis G. Progress in cancer gene therapy. Acta Oncol 1999; 38(6): 675–83

    Article  PubMed  CAS  Google Scholar 

  10. Purcell DF, Broscius CM, Vanin EF, et al. An array of murine leukemia virus-related elements is transmitted and expressed in primate recipient of retroviral gene transfer. J Virol 1996; 70: 887–97

    PubMed  CAS  Google Scholar 

  11. Li Z, Dullmann J, Schiedlmeier B, et al. Murine leukemia induced by retroviral gene marking. Science 2002Apr 19; 296(5567): 497

    Article  PubMed  CAS  Google Scholar 

  12. Fisher KJ, Choi H, Burda J, et al. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology 1996; 217: 11–22

    Article  PubMed  CAS  Google Scholar 

  13. Kochanek S, Clemens PR, Mitani K, et al. A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and b-galactosidase. Proc Natl Acad Sci U S A 1996; 93: 5731–6

    Article  PubMed  CAS  Google Scholar 

  14. Kochanek S. High-capacity adenoviral vectors for gene transfer and somatic gene therapy. Hum Gene Ther 1999; 7: 527–33

    Google Scholar 

  15. Yang Y, Nunes FA, Berencsi K, et al. Cellular immunity to viral antigens limits El-deleted adenoviruses for gene therapy. Proc Natl Acad Sci U S A 1994; 91: 4408–11

    Google Scholar 

  16. Marshall E. Gene therapy on trial. Science 2000May 12; 288(5468): 951–7

    Article  PubMed  CAS  Google Scholar 

  17. StGeorge JA. Gene therapy progress and prospects: adenoviral vectors. Gene Ther 2003; 10: 1135–41

    Article  Google Scholar 

  18. Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther 2002; 9: 1647–52

    Article  PubMed  CAS  Google Scholar 

  19. Schatzlein AG. Non-viral vectors in cancer gene therapy: principles and progress. Anticancer Drugs 2001; 12: 275–304

    Article  PubMed  CAS  Google Scholar 

  20. Mannucci PM, Tuddenham GD. The hemophilias: from royal genes to gene therapy. N Engl J Med 2001Jun 7; 344(23): 1173–9

    Article  Google Scholar 

  21. Kay MA, Manno CS, Ragni V, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000; 24: 257–61

    Article  PubMed  CAS  Google Scholar 

  22. Roth DA, Tawa NE, O’Brien JM, et al. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med 2001Jun 7; 344(23): 1735–42

    Article  PubMed  CAS  Google Scholar 

  23. Powell JS, Ragni MV, White GC, et al. Phase I trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion. Blood 2003Sep 15; 102(6): 2038–45

    Article  PubMed  CAS  Google Scholar 

  24. Van denDriessche T. Challenges and progress in gene therapy for hemophilia A. Blood 2003Sep 15; 102(6): 1938–9

    Article  Google Scholar 

  25. Ohashi T, Boggs S, Robbins P, et al. Efficient transfer and sustained high expression of the human glucocerebrosidase gene in mice and their functional macrophages following transplantation of bone marrow transduced by a retroviral vector. Proc Natl Acad Sci U S A 1992; 89: 11332–6

    Article  PubMed  CAS  Google Scholar 

  26. Sorge J, Kuhl W, West C, et al. Complete correction of the enzymatic defect of type I Gaucher disease fibroblasts by retroviral mediated gene transfer. Proc Natl Acad Sci U S A 1987; 84: 906–9

    Article  PubMed  CAS  Google Scholar 

  27. Dunbar CE, Kohn DB, Schiffmann R, et al. Retroviral transfer of the glucocerebrosidase gene into CD34+ cells from patients with Gaucher disease: in vivo detection of transduced cells without myeloablation. Hum Gene Ther 1998; 9: 2629–40

    Article  PubMed  CAS  Google Scholar 

  28. Cavazzana-Calvo M, Hacein-Bey S, de SaintBasile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-Xl disease. Science 2000; 288: 669–72

    Article  PubMed  CAS  Google Scholar 

  29. Hacein-Bey-Abina S, Le Deist F, Carrier F, et al. Sustained correction of x-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002; 346: 1185–93

    Article  PubMed  CAS  Google Scholar 

  30. Hacein-Bey-Abina S, vonKalle C, Schmidt M, et al. A serious adverse event after successful gene therapy for x-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–6

    Article  PubMed  Google Scholar 

  31. Dave UP, Jenkins NA, Copeland NG. Gene therapy insertional mutagenesis insights. Science 2004; 303: 333

    Article  PubMed  Google Scholar 

  32. Hacein-Bey-Abina S, vonKalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–9

    Article  PubMed  CAS  Google Scholar 

  33. Jemal A, Murray T, Ward E, et al. Cancer statistics, 2005. CA Cancer J Clin 2005; 55: 10–30

    Google Scholar 

  34. Delves PJ, Roitt IM. The immune system: first of two parts [published erratum appears in N Engl J Med 2000; 343 (15): 1132]. N Engl J Med 2000Jul 6; 343: 37–49

    Article  PubMed  CAS  Google Scholar 

  35. Tanaka K, Isselbacher KJ, Khoury G, et al. Reversal of oncogenesis by expression of a major histocompatibility complex class I gene. Science 1985; 228(4695): 26–30

    Article  PubMed  CAS  Google Scholar 

  36. Nouri AM, Hussain RF, Dos SA, et al. Intensity of class I antigen expression on human tumour cell lines and its relevance to the efficiency of non-MHC-restricted killing. Br J Cancer 1993; 67: 1223–8

    Article  PubMed  CAS  Google Scholar 

  37. Marincola FM, Shamarnian P, Alexander RB, et al. Loss of HLA haplotype and B locus down-regulation in melanoma cell lines. J Immunol 1994; 153(3): 1225–37

    PubMed  CAS  Google Scholar 

  38. Hicklin DJ, Wang Z, Arienti F, et al. Beta-2-microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest 1998; 101(12): 2720–9

    Article  PubMed  CAS  Google Scholar 

  39. Plautz GE, Yang Z, Wu B, et al. Immunotherapy of malignancy by in vivo gene transfer into tumors. Proc Natl Acad Sci U S A 1993May; 90: 4645–9

    Article  PubMed  CAS  Google Scholar 

  40. Galanis E. Technology evaluation: Allovectin-7®, Vical. Curr Opin Mol Ther 2002; 4(1): 80–7

    PubMed  CAS  Google Scholar 

  41. Bergen M, Chen R, Gonzalez R. Efficacy and safety of HLA-B7/β-2 microglobulin plasmid DNA/lipid complex (Allovectin-7®) in patients with metastatic melanoma. Expert Opin Biol Ther 2003; 3(2): 377–84

    PubMed  CAS  Google Scholar 

  42. D’Urso CM, Wang ZG, Cao Y, et al. Lack of HLA class I antigen expression by cultured melanoma cells FO-1 due to a defect in B2m gene expression. J Clin Invest 1991; 87(1): 284–92

    Article  PubMed  Google Scholar 

  43. Nabel GJ, Nabel EG, Yang Z, et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A 1993Dec; 90: 11307–11

    Article  PubMed  CAS  Google Scholar 

  44. Nabel GJ, Gordon D, Bishop DK, et al. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc Natl Acad Sci U S A 1996Dec; 93: 15388–93

    Article  PubMed  CAS  Google Scholar 

  45. Silver HKB, Klasa RJ, Bally JB, et al. Phase I gene therapy study of HLA-B7 transduction by direct injection in malignant melanoma [abstract]. Proc Am Assoc Clin Res 1996; 3: 342: 3227

    Google Scholar 

  46. Stopeck AT, Hersh EM, Akporiaye ET, et al. Phase I study of direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7, in patients with metastatic melanoma. J Clin Oncol 1997; 15(1): 341–9

    PubMed  CAS  Google Scholar 

  47. Stopeck AT, Jones A, Hersh EM, et al. Phase II study of direct intralesional gene transfer of Allovectin-7®, an HLA-B7/β2-microglobulin DNA-liposome complex, in patients with metastatic melanoma. Clin Cancer Res 2001Aug; 7: 2285–91

    PubMed  CAS  Google Scholar 

  48. Richards JM, Bedikian A, Gonzalez R, et al. High-dose Allovectin-7® in patients with advanced metastatic melanoma: final phase 2 data and design of phase 3 registration trial [abstract no. 7543]. Proceedings of ASCO 2005, 41st annual meeting; 2005 May 13–17; Orlando (FL)

  49. Gleich LL, Gluckman JL, Armstrong S, et al. Alloantigen gene therapy for squamous cell carcinoma of the head and neck: results of a phase I trial. Arch Otolaryngol Head Neck Surg 1998Oct; 124: 1097–104

    PubMed  CAS  Google Scholar 

  50. Gleich LL, Gluckman JL, Nemunaitis J, et al. Clinical experience with HLA-B7 plasmid DNA/lipid complex in advanced squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 2001Jul; 127: 775–9

    PubMed  CAS  Google Scholar 

  51. Rini BI, Selk LM, Vogelzang NJ. Phase I study of direct intralesional gene transfer of HLA-B7 into metastatic renal carcinoma lesions. Clin Cancer Res 1999Oct; 5: 2766–72

    PubMed  CAS  Google Scholar 

  52. Rubin J, Galanis E, Pitot HC, et al. Phase I study of immunotherapy of hepatic metastases of colorectal carcinoma by direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7. Gene Ther 1997; 4(5): 419–25

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, K.D., Humes, T.N. & Gonzalez, R. Current Status and Future Prospects of Gene Therapy. Am J Cancer 4, 137–144 (2005). https://doi.org/10.2165/00024669-200504030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024669-200504030-00001

Keywords

Navigation